
Theor Chim Acta (1991) 79:1-42 Theoretica
Chimica Acta
© Springer-Verlag 1991

The automated solution of second quantization equations
with applications to the coupled cluster approach*

Curtis L. Janssen and Henry F. Schaefer III
Center for Computational Quantum Chemistry, University of Georgia, Athens, GA 30602, USA

Received August 14, 1990; received in revised form/Accepted September 26, 1990

Summary. Theoretical methods in chemistry frequently involve the tedious solu-
tion of complex algebraic equations. Then the solutions, sometimes still quite
complex, are usually hand-coded by a programmer into an efficient computer
language. During this procedure it is all too easy to make an error which will go
undetected. A better approach would be to introduce the computer at an even
earlier stage in the development of the theory by programming it to first solve
the set of equations and then compile the solution into an efficient computer
language. In this research a program has been written in the C programming
language which can efficiently compute the quasivacuum expectation Value of a
product of creation and annihilation operators and scalar arrays. The terms in
the resulting expressions are then transformed into a canonical form so that all
equivalent terms can be combined. Finally, the equations are compiled into a
simple representation which can be rapidly interpreted by a Fortran program.
This symbol manipulator has been applied to open-shell coupled cluster theory.
Two coupled cluster methods using high-spin open-shell references are presented.
In one of these methods, the cluster operator contains the unitary group
generators, and products thereof, which generate all single and double excita-
tions with respect to the reference. The other uses a simplified cluster operator
which generates equations that must be spin-projected. These methods are
compared to other descriptions of electron correlation for the CH2 singlet-triplet
splitting and the NH 2 potential energy surface.

Key words: Second quantization equa t ions- Coupled cluster approach- Elec-
tronic structure - Schr6dinger equation - C programming language

1. Introduction

Theoretical methods in physical science frequently involve the tedious solution of
complex algebraic equations. To aid researchers in deriving such equations,

* A condensation of the Ph.D. thesis of Curtis L. Janssen, Department of Chemistry, University of
California, Berkeley, California, March 1990

2 c.L. Janssen and H. F. Schaefer III

elaborate methods have been devised in which the equations can be represented
as diagrams [1-4]. These diagrammatic approaches are very powerful and
greatly reduce the amount of labor needed to obtain the necessary equations.
However much these techniques reduce the researcher's chore, the complexity of
the equations which can be derived remains constrained by a human's ability to
manipulate the equations, whether by diagrammatic or any other means.

This constraint would not pose any problem if human imagination was so
limited that the only theoretical approaches to the description of nature which
could be conceived had a simple solution. Fortunately, this is not the case.
Unfortunately, very complex equations can be generated by even conceptually
simple physical theories.

Similarly, even after a simple set of equations has been obtained, their
evaluation can be very difficult if done by hand. To be more concrete, the
self-consistent eigenvalue problem which arises in Hartree-Fock theory for
molecular orbitals composed of a linear combination of atomic orbitals [5] can
be easily written on a few pages of paper, but only the simplest physical systems
can be studied without the use of an electronic computer. With the advent of
these machines the use of Hartree-Fock theory and corrections thereof to the
study of chemical problems became a field in itself. There is no reason that the
same computers which have been found to be essential in the evaluation of the
equations resulting from physical theories cannot be used to derive the equations
pertinent to unexplored theories as well.

In the present work, we are concerned with electronic structure in chemical
systems. More specifically, we are investigating the solution of the time indepen-
dent Schrrdinger equation for electrons moving in a nuclear Coulomb field
where the Born-Oppenheimer approximation is invoked and, hence, the nuclei
are considered to be stationary. The expansion of the wavefunction in terms of
one particle functions has been extensively used and is in excellent starting point
for a theory describing electron correlation. This starting point allows the second
quantization formalism to be used as a convenient method for describing the
behavior of electrons in terms of the one particle functions. It is the basis for
many algebraic and diagrammatic approaches to electron correlation. We have
developed a computer program for deriving equations which can be expressed in
this formalism. The program allows algebraically complex expressions to be
derived and writes these equations in the simplest possible final form. This
program, referred to as the second quantization symbol manipulator, SQSYM,
will be described in detail in Sect. 2.

The ability to obtain solutions to theories which suffer a very complex
algebraic structure would be of little use if we could not apply the solutions to
specific chemical systems. That is, it is essential that the solutions be expressed in
some computer programming language, such as Fortran. If SQSYM accom-
plishes its stated goal, then it will be able to produce equations which are too
complex for a human to code in a programming language. So, yet again, one
turns to the electronic computer, but, this time, for an automated compilation of
the equations into a high-level programming language. This is implemented as an
extension to SQSYM and is also detailed in Sect. 2.

The automated solution and compilation of physical theories was never a
goal in itself. Our principal interest has always been electronic structure theory.
We found the range of theories which could be investigated limited by the time
consuming process of doing tedious algebraic or diagrammatic manipulations.
The area we found most interesting, open-shell coupled cluster theory, was so

Automated solution of second quantization equations 3

algebraically complex that the project seemed hopeless if one had to do the
derivations by hand. Thus, SQSYM was born. We found it necessary to discuss
the details of SQSYM in the present work, since its development became a
research project in its own right, but the essence of the research is found in the
final sections. There are described the versions of open-shell coupled cluster
theory for which SQSYM was used to transform from a concept into a method
which could produce physical observables for general chemical systems.

Before the open-shell coupled cluster theories are discussed, motivation for
pursuing these algebraically complex methods should be provided. The basic
notion of coupled cluster theory is that the wavefunction of a many body system
can be well represented in terms of only few body interactions. This idea also
appears in the virial expansion for an imperfect gas, where the virial coefficients
can be broken down into one, two, three, etc. body contributions. For dilute
gases, the one and two body contributions provide a good approximation to the
virial expansion [6]. Moving to the quantum mechanical regime, the method of
self-consistent fields is usually the starting point for the problem of many
interacting particles. This method reduces the many body problem to several one
body problems. In the coupled cluster approach [4, 7] the self-consistent field
wavefunction is improved upon by writing the exact wavefunction as

=er~,

T -- r l q-/'2 q- T3 -.i- • • • ,

where ~ is the exact wavefunction, 4i is the self-consistent field wavefunction, /'1
represents one particle excitations, /'2 represents two particle excitations, and so
on. The operator T is frequently called the cluster operator and e r is referred to
as the wave operator. Letting N be the number of particles, this expansion is
exact if all T~ up to TN are included. To reduce the complexity of the equations
a common approximation is to let T = T1 + / '2 . This approximation is exact for
two particles and even exact for certain many particle systems. For example, if
we have N/2 noninteracting systems, each with two electrons, and labeled
A, B, C, etc., then

~AB--- = e rA~Ae rB~ B • • •

=eTA+TB+"'~AB

Thus, for this N body system, T = T 1 + / ' 2 generates the exact wavefunction. The
question is how will this theory perform when these two body systems are
allowed to interact.

I f we look back to the example of the dilute imperfect gas for an indication
of the quality that can be expected by including up to only two body interactions
in our many electron theory, we might expect that it will fare quite well. But a
fundamental difference between the electronic many body problem and the
imperfect gas is that while a dilute gas would have almost exclusively two body
collisions, a given electron in a molecule will feel the repulsion of many other
electrons simultaneously. That is, the Coulomb force acts over a much longer
range than the interactions between gas molecules, relative to the mean distance
between particles. Despite this, the self-consistent field (SCF) approximation
turns out to be a fairly good description of molecules because the Coulomb force
felt by an electron can be replaced to a large extent by the average force due to
all other electrons. The short range of the fluctuation potential in atomic systems
[8] demonstrates this and the many body terms can be sensibly approximated by

4 C.L. Janssen and H. F. Schaefer III

products of independent few body terms, given that an SCF wavefunction is used
as the starting point.

However, even the SCF wavefunction can be expressed as the exponential of
one body operators by using Thouless's theorem [9], • = eriE, where E is an
antisymmetrized product of atomic orbitals. This fact explains the success of
coupled cluster methods which set ~ = e r2~. This coupled cluster doubles (CCD)
wavefunction contains, for instance, quadruple excitations of electrons, but the
coefficients of these states are approximated as the products of the coefficients of
doubly excited states. The advantage of representing the quadruple excitations in
this way is that the number of unknowns which must be determined for this theory
is much smaller than the number needed to exactly represent all the coefficients
of all excited states. So from an intuitive viewpoint the coupled cluster approach
seems very appealing. However, the ultimate test is how well experimental results
can be reproduced, or, better yet, predicted. There is a growing body of evidence
[10-13] suggesting that coupled cluster theory, at least for closed-shell systems,
is a better approximation than methods of similar computational complexity, for
example the configuration interaction (CI) approach.

However, for open-shell systems the problem is not yet completely solved,
despite the fact that a great deal of work has been invested into the problem of
generalizing the reference state [14], Most of this effort has been directed towards
the development of multireference coupled cluster theories. Instead of using a
single Slater determinant as a reference function, these methods utilize wave
operators which act upon a reference function formed from a linear combination
of Slater determinants. The space of determinants which is used to form the
reference is known as the model space. The selection of model space is used to
classify the orbitals. Typically the orbitals occupied in all model functions are
referred to as holes, those which are occupied in some model functions are valence
orbitals, and orbitals which are occupied in no model space functions are particle
orbitals. The number of electrons in the valence orbitals will be called Nv.
Commonly used model spaces are the complete and quasicomplete model space.
The complete model space contains the functions corresponding to all possible
occupations of the valence orbitals with Nv electrons. The quasicomplete model
space further partitions the valence orbitals into subgroups. The number of
electrons in each of these subgroups is fixed, and all functions which have the
appropriate number of electrons in each subgroup are included in this model
space. It would be most desirable to have a method which can work with a general
incomplete model space, but we must consider how the selection of the model
space affects the connectedness of the expressions for the effective Hamiltonian
and the size-extensivity of the effective Hamiltonian's roots. While it is now fairly
well understood that size extensive energies may be obtained for the compelte
model space, some questions still remain about more general model spaces [15].
The multireference formalisms tend to be considerably more complex than their
single reference counterparts. Moreover, the methods are computationally expen-
sive and in some cases near singularities arise in the equations to be solved.

One group of multireference coupled cluster methods is based on the technique
of Jeziorski and Monkhorst [16]. In 1981 Jeziorski and Monkhorst proposed a
multireference coupled cluster method in which the exact wavefunction is ex-
pressed as a linear combination of cluster expansions:

~v r e r .~
vv/a - - , u ,

/.t

Automated solution of second quantization equations 5

where the linearly independent set of n functions, ~u, form the model space and
the cvu are obtained by the diagonalization of an effective Hamiltonian which has
dimension n to yield roots, 7tv, 1 ~< v ~< n. The connectedness of this approach for
the complete model space was demonstrated by Jeziorski and Monkhorst. Laidig
and Bartlett [17] implemented a simplified version of this method in 1984. Their
method included only terms linear in the cluster operator and was restricted to
the ground state of the system of interest. Laidig et al. [18] went on to use a
spin-adapted formalism in 1987. This approach uses the graphical unitary group
approach to generate the requisite matrix elements. The method of Jeziorski and
Monkhorst was also implemented by Jeziorski and Paldus [19] in 1988. In this
case the only approximation was the restriction to single and double excitations
in the cluster operator and the exclusion of terms which were nonlinear in the
cluster operator. These authors used a spin-adapted formalism and restricted the
model space to the specific but important case of a complete space in two
orbitals of different symmetry. For this choice of model space there are two
model functions both of which are closed-shell wavefunctions. The restriction to
linear terms was upgraded to a restriction to quadratic terms by Paldus et al.
[20]. They found that, like in the single reference linearized coupled cluster case,
the quadratic terms help eliminate the singularities that can arise in the linearized
theories. Another implementation of the Jeziorski and Monkhorst method was
accomplished by Meissner et al. [21] in 1988. They restricted the cluster operator
to two particle excitations only, but fully treated the nonlinear terms. The model
space had to be of the complete variety, but in 1989 Meissner et al. [22] extended
the method to include special classes of incomplete model spaces while still
achieving size extensive expressions for the energy and Meissner and Bartlett [23]
went on to develop an approach for general incomplete model spaces in 1990.

Spin adaptation of multireference coupled cluster theory is rather straight-
forward for linearized methods, but is quite difficult when nonlinear products of
the cluster operator are kept. The only example of a spin-adapted multireference
coupled cluster theory that retains nonlinear terms discussed thus far is that of
Paldus et al. [20]. Banerjee and Simons [24] set out to develop a spin-adapted
multireference coupled cluster method in 1981. Their cluster operator, T, was
expressed in terms of the generators of the unitary group:

EPq = E atpaaqa •

Unitary group generators are used to ensure that IS 2, T] = 0. With this form for
T, the operator T and its powers do not introduce spin contamination into the
wavefunction. The prescription they present involves first obtaining a complete
active space (CAS) SCF wavefunction, lTt). This wavefunction is to be frozen
throughout the rest of the procedure. Then, they approximate T as T 1 + T2,
where

rl = Z txEa,
a , x

T2= Z t~E~E~.
a <~ b , x , y

Here and elsewhere labeling conventions will be used to specify the ranges of
summations. The indices i and j will refer to holes, x and y will label valence
orbitals, a and b will designate particles, and p, q, r, and s label indices which can

6 c.L. Janssen and H. F. Schaefer III

take on any value. With this choice of T, Banerjee and Simons were able to
obtain and apply a theory including in the energy terms up to quadratic in T.
Baker and Robb [25] implemented a theory similar to this, but used only T =/ '2
and modified it to be anti-Hermitian. Then they minimized the energy:

E = (~gl{er2}*Her21P) = (P l e - r 2 H e r 2 } ~) .

This energy expansion was truncated to quadratic terms in T. Thus, when the
energy is minimized with respect to variations in the cluster amplitudes, the
equations obtained for the amplitudes were linear in T. It should be noted that
the energy expression which is being minimized is an approximate energy
expression and thus the computed energy may come out below the full CI
energy, which is the exact solution within the given basis set. The procedure of
Banerjee and Simons and that of Baker and Robb suffer severe problems in their
practicability. The size of the CASSCF expansion grows exponentially with the
number of valence orbitals for a given number of electrons. Since this greatly
limits the size of the valence space, it is desirable to include core electron
correlations through the cluster operator. However, the above methods do not
possess this ability. In 1988, Hoffmann and Simons [26] resolved this problem
with their unitary coupled cluster (UCC) method. An anti-Hermitian cluster
operator was used to obtain a unitary wave operator and the resulting energy
expression was truncated at quadratic terms in T and minimized with respect to
variations in T. All single and double excitations were included in their cluster
operator. This method is computationaUy expensive; however, Hoffmann and
Simons went on to present [27] a related, but computationaUy efficient formal-
ism, UCEPA, one year later.

Another important group of multireference methods, whose overview shall
be left to Mukherjee and Pal [14], is formulated around a single wave operator

which generates not only the ~(Uv~, but also the ionized system wavefunctions
7t(~ n~, where 0 ~< n < Nv. This introduces a surplus of unknowns and equations if
one is interested in only unionized states of a chemical system, as is frequently
the case. These methods receive strong support because they transparently
remove linear dependencies between the cluster amplitudes and also because it is
better understood that the energies produced by these methods are size extensive
for incomplete model spaces.

Despite the progress in the multireference coupled cluster methods, the
investigation of single reference techniques for open-shell systems has not yet
been exhausted. The role which these methods would fill is the efficient and
accurate prediction of properties for open-shell systems which are dominated by
one reference. The reference could be either a single Slater determinant or a
simple linear combination of determinants where the coefficient of each determi-
nant is constrained by the desire to obtain a proper eigenfunction of S a. The
coupled duster formalisms based on unrestricted spin orbitals can already be
used to treat the high-spin open-shell case, where the number of 0~ spin occupied
orbitals is greater than the number of/~ spin occupied orbitals. This method
suffers from a spin contaminated wavefunction and energy; that is, the wavefunc-
tion is not an eigenfunction of the S 2 operator and contributions from the
contaminants appear in the energy expression. These methods also require that
more unknowns are present than are actually required to solve the problem.
Rittby and Bartlett [28] pointed out that if an unrestricted Hartree-Fock (UHF)
reference is discarded in favor of a restricted Hartree-Fock (RHF) reference,
then, even in a spin orbital (as opposed to spin eigenfunction) formulation, some

Automated solution of second quantization equations 7

relief to these difficulties can be found. In this case, spin contaminated contribu-
tions to the energy disappear, while the wavefunction itself retains contributions
of the wrong spin symmetry. They refer to this method as projected coupled
cluster (PCC). Projected coupled cluster still requires determining more un-
knowns than should be necessary.

Although differing somewhat from the traditional coupled cluster theories,
Nakatsuji and Hirao suggest a method [29, 30] for the closed-shell reference and
high-spin open-shell reference case, which has been designated symmetry adapted
cluster (SAC) theory, where the cluster operator generates only those excitations
from the reference which are of the appropriate spin symmetry. Nakatsuji and
Hirao truncated their cluster operator to only single excitations in all of the
systems with open-shell references that they studied using this method, although
some of these did not interact with the reference through one body operators.
This cluster operator does not necessarily generate spin eigenfunctions when it
operates on functions other than the reference; thus, the wave operator generates
a wavefunction which is not an eigenfunction of spin. They chose to deal with
this by projecting out the spin contaminants. All of these contaminants come
from the terms which are nonlinear in the cluster operator. Hirao and Nakatsuji
treated higher excitations from an open-shell reference with another method [31],
where open-shell singlet and triplet wavefunctions were obtained by starting with
the reference determinant

where ~bi are the spatial orbitals obtained from a RHF procedure. The cluster
operator was chosen to include all interacting single and double excitations from
the reference. To obtain an expression for the energy or equations for the cluster
coefficients the heavily spin contaminated wavefunction ~ = e T~ is operated
upon by a singlet or triplet spin projector to remove the undesired components.
A method for describing open-shell singlets and triplets without starting from
such a poor reference would be better.

In the present work the symbol manipulator, which will be discussed in Sect.
2, will be used to assist in the development of several coupled cluster methods for
describing electron correlation in systems that are well approximated by a single
high-spin open-shell reference determinant. Section 3 will begin by outlining the
basic approach by applications to a method which is already well understood,
specifically, configuration interaction. These and all other applications of the
symbol manipulator will include all single and double excitations which directly
interact with the reference. Section 3 continues with a spin-adapted open-shell
coupled cluster method truncated to cubic terms in the cluster operator and then
ends with an approach which bears resemblances to the SAC method of
Nakatsuji. Section 4 will present results for a few chemical systems and Sect. 5
closes with a discussion of the main results.

2. The automated solution of second quantization equations

Many theoretical approaches can be described in the second quantization
formalism. Perturbation theory, configuration interaction, coupled cluster, and
other methods which use one particle orbitals as their starting point have
realizations in this formalism. We shall focus our attention on coupled cluster
with the standard nonrelativistic electronic Hamiltonian. After the form of the

8 C . L . Janssen and H. F. Schaefer III

reference function, [qQ, and the cluster operator T have been decided upon, all
that remains is to evaluate the expression

E~ = (~[e-rHer[~), (2.1)

using projections upon excited states, IX), to determine the T operator:

<Xle- rHer[~> = 0. (2.2)

A second quantization representation of T and H leads to a very straightforward
solution of the above equations. While the manipulations required to obtain the
solution do not require much innovation, it does require a great deal of
error-prone work. This complexity motivated diagrammatic approaches, without
which, much of the published work in perturbation theory, coupled cluster,
etc. could not have been done. But for a sufficiently complex choice of T,
even the diagrammatic methods can become unwieldy and subject to a multiplic-
ity of human errors. This is the motivation for an automated solution to this
problem.

The computer program developed in this research for obtaining the solutions
to these equations will be called the second quantization symbol manipulator
(SQSYM). This program understands simple commands which are used to
describe the operators and then manipulate the expressions. The expressions
produced can be very complex. In some cases rearranging the expressions in such
a way that they can be effÉciently executed on a computer, allowing the energy
actually to be computed for some arbitrary molecule, would be a monumental
task, perhaps even impossible if the task was left to human hands alone. Thus,
after the expressions have been obtained and rewritten in their simplest form,
SQSYM must be able to take the expressions and compile them into a language
which can be efficiently executed.

This section is concerned with describing the approach taken by SQSYM to
solve these problems. First, the second quantization formalism will be reviewed,
then the language which the SQSYM interpreter understands will be outlined.
Following this, we will discuss the implementation details for SQSYM. This
entails such things as the data representation and data manipulation.

2.1. Second quantization formalism

The second quantization formalism [32, 33] provides a simple method for
computing matrix elements of operators between states written as an antisym-
metrized product of orbitals, each with single occupancy. These states are built
up from the true vacuum, I), by the particle creation operators, avt :

14> = 1-I .;1>. (2.3)
P

The adjoint of a creation operator is a particle annihilation operator, a v. To
create properly antisymmetrized wavefunctions the creation and annihilation
operators must obey the anticommutation relations

{a;, aq } = ~p,q, (2.4a)

{a;, a*q } = 0, (2.4b)

Automated solution of second quantization equations 9

and

{ap, aq } = 0. (2.4c)

Operators can be expressed as sums of products of creation and annihilation
operators. The one body operators can be expressed as

01 = ~ ~-,plollq>a?paq
p,q

and two body operators can be written

(2.5)

where

and

02=½ Z (Pql°2lsr)a~atqaras, (2.6)
p,q,r,s

(p[ol Iq) = f drep(r)ol (aq(r) (2.7)

t"
(,pqlo2[rs) = J cO 1 dr2~p(rl)¢q(r2)O2~r(rl)¢s(r2). (2.8)

For the case of two electron integrals the notation

(pr [qs) = (,Pql 1 Irs) (2.9)
r12

is frequently used. The summations in these general operators must run over all
the basis functions.

It is inconvenient to have to deal with the product of large numbers of
creation operators which occur in Eq. (2.3). It is better to redefine the vacuum
to be some reference function,

[0) = l-[a t I), (2.10)
i

following which all of the states we must deal with can be expressed in terms of
the quasivacuum, 10), by applying the desired electron creation and annihilation
operators. For example, a single excitation from the reference can be written as
creation of a hole (annihilation of an orbital that is occupied in 10)) followed by
creation of a particle (creation of an occupied orbital which was previously
unoccupied in [0)). This state would be written a~a~ [0).

Now we have all of the tools that are necessary to evaluate matrix elements
with this formalism. Any matrix element can be written as the quasivacuum
expectation value of a product of creation and annihilation operators contracted
with the appropriate matrix elements. Observing that any given creation or
annihilation operator, X, will satisfy either X[0) -- 0 or (0IX = 0, we can use Eq.
(2.4) to commute the creation and annihilation operators around each other
until they act upon either the quasivacuum or its adjoint to give zero. After all
of the creation and annihilation operators have been eliminated in this manner
a strictly scalar expression will remain. This is the desired matrix element. This
process can be simplified by using Wick's theorem [34], which implicitly

10 C.L. Janssen and H. F. Schaefer III

performs all of the required commutations for us. Wick's theorem can be
written

A B C D • • • X Y Z = : A B C D • • • X Y Z :

I--7 t I 7 - q

+ : A B C D • • • X Y Z : + : A B C D • • • X Y Z : + • • • + : A B C D • • • X Y Z :

+ : A B C D • . • X Y Z : + : A B C D • • • X Y Z : + • • • + : A B C D • • • X Y Z :

° . .

+ : A B C D • • • X Y Z : + : A B C D • • • X Y Z : + • • • + : A B C D • • • X Y Z : (2.11)

or

an operator = the normal ordered operator + all possible normal ordered prod-
ucts with single contractions + all possible normal ordered products with two
contractions +- • • + the fully contracted products, where the normal ordering of
operators is represented by placing colons on either side of the group of
operators to be normal ordered. The normal ordering process moves operators
which annihilate <01 to the left or, equivalently moves operators which annihilate
10> to the right. This motion is done with the sign modifications specified by the
anticommutation relations, but the contractions which come from the delta
functions in the anticommutation relations are ignored.

To relate an operator to its normal ordered form, the contractions which
arise in the anticommutation process must be considered and are represented by
a line drawn between two operators. A contraction generates a Kronecker delta
between the indices of the operators being contracted. If the operators are in
different spaces (one operates in the particle space and one operates in the hole
space) the delta function is zero. Similarly, if the operators do not need to be
commuted to obtain a normal ordered form, then a contraction between these
two operators must not appear. Also, if the two operators are of the same type
(both are creation operators or both are hole operators), then the contracted
term does not appear. Finally, the sign of each term must be adjusted to reflect
the number of commutations which had to be performed to get that term. This
can be simply computed by taking the sign change needed to normal order the
operators remaining after the contractions have been performed multiplied by
(- - 1) ner°ssings, where nerossing s is the number of times the contraction fines in Eq.
(2.11) cross.

When expectation values with respect to the reference wavefunction are
computed using Wick's theorem, the only terms to survive are the fully con-
tracted products.

Due to the complexity of the above procedure elegant diagrammatic methods
have been developed to simplify the derivation process. With these methods one
represents matrix elements and the cluster operator as points on a page. Then,
one draws rays corresponding to creation and annihilation operators entering or
leaving these points. The rays between matrix elements and operators are then
connected in all possible ways to obtain diagrams which are related to the terms
which the anticommutation relations could give in a slightly more straight-
forward yet much more tedious manner.

Automated solution of second quantization equations 11

The indices of the creation and annihilation operators used so far in this
section specify spin orbitals. That is, the product of a spatial one electron orbital,
~bp, and an electron spin function, ~ or ft. In much of what follows we shall
require that each spatial orbital, ~bp, is used with two spin orbitals, ~bq, and ~bpp.
This is the starting point for building wavefunctions of the correct electron spin
symmetry and the use of the same spatial orbital for two spin orbitals is known
as the restricted Hartree-Fock (RHF) procedure.

Now it is necessary to associate with each creation and annihilation operator
two indices, one for the spatial part and one for the spin part. So we have ap,,
where p refers to the spatial orbital and tr takes on the values ~ or fl and refers
to the spin. From these operators we can define the particle number and spin
conserving operators

EP = Z a~p ¢r aq~, (2 . 12)
¢r

which are known as the generators of the unitary group.
Since the Hamiltonian is both particle number and spin conserving it can be

expressed in terms of the unitary group generators:

H = hpqE p + ½ (pq [rs)(gPqE; - (~qrEPs), (2.13)

where repeated indices imply summations. Similar expressions exist for other
operators written with the second quantization formalism.

2.2. The S Q S Y M interpreter

SQSYM is an interpreter. That is, it reads input from a file or terminal and
executes the commands as they are read. This is in contrast to a compiler, where
the commands to be executed are first translated into another language. Fre-
quently, this language is the machine's most primitive and efficient language.
There is always extra overhead associated with interpreting the commands
instead of running a program that has been compiled into a very efficient
language. However, for SQSYM, this overhead is very small. The SQSYM
language is designed to allow much to be done with very few commands. For
example, there is one command that takes the product of several expressions and
then computes the expectation value of the resulting expression. The vast
majority of the time is spent performing this complex task, while very little time
is needed to determine what command has been requested, where the data are
located, and what routines must be called.

SQSYM can also act as a compiler. However, it does not compile its input
program into a more efficient language like most other compilers. Instead, the
input is always interpreted with the result of producing data that are internal to
SQSYM and which represent mathematical expressions. When the compiler
portion of SQSYM is invoked, these expressions are compiled into a form which
can be executed. This target language consists of primitive commands that
perform various operations between one or two arrays. To obtain an energy for
some molecular system the compiler output must be interpreted by another
program.

There are two different routes which could have been followed in implement-
ing SQSYM. A previously existing symbol manipulator such as Macsyma,
Reduce, or Mathematica [35] could have been used as a starting point. All of

12 C.L. Janssen and H. F. Schaefer III

these packages are large and complex; one person could not reproduce all of
the effort that went into these packages. However, most of the features of these
commercial programs are not needed for the present purposes. Such things as
analytic integration are not necessary in SQSYM. Furthermore, each of these
packages has severe deficiencies with regard to manipulation of second quan-
tization equations. Although Reduce has been used successfully for simple
second quantization problems in quantum chemistry [36], much customization
of Macsyma, Reduce or Mathematica would be required to efficiently derive
and simplify the large and complex expressions which must be dealt with in the
present work. Furthermore, they would be useless for the conversion of the
equations to forms which could be either compiled or efficiently executed.
Macsyma and Mathematica do have primitive routines which can produce
Fortran code segments; however, this feature would not be able to produce
efficient code where multidimensional arrays are concerned. Moreover, the use
of such commercial products may restrict the number of machines which
SQSYM could run on. The task at hand is sufficiently computationally inten-
sive that it demands that the fastest machine available at any given time be
used to run the application. Thus, the idea of starting from an existing com-
mercial product had to be abandoned.

Ruling out commercial symbol manipulation packages as a starting point
does not complete the choice of implementation, however. Next the language in
which SQSYM is written must be chosen. Three possibilities were considered,
Fortran, Lisp [37], and C [38]. For t ran is a widely available and efficient
language, but, it is not a good choice for large complex programs. The limita-
tion of six characters on the lengths of symbols such as variable names and
subroutine names make it difficult to give meaningful names in all cases.
When hundreds of subroutines and as many variables are being used, the
ability to assign descriptive names speeds the programming and debugging
processes. Another problem with Fortran is the limited number of data
types that are available. Fortran provides for integers, finite precision real
numbers, characters, and arrays of these data types. It is much more conve-
nient to be able to define user data types, so that pieces of related data can
be moved around as one unit. The data types SQSYM uses are somewhat
complex and discussed in more detail later. Finally, many of the algorithms
needed are recursive in nature, such as the evaluation of Wick's theorem, and
not all dialects of Fortran allow recursion. The next language to be discussed,
Lisp, was actually used in the original implementation of SQSYM. It is
available on fewer machines than Fortran, but is still fairly common. Lisp
has traditionally been an interpreted language, but compilers are commercially
available. Lisp is a good symbol manipulation language, but even when it
is compiled it runs more slowly than either Fortran or C. User data types
can be constructed as lists of the built-in data types and Lisp will provide
for recursion. This is why Lisp was preferred over Fortran. Lisp was chosen
as the language for the initial implementation for SQSYM, primarily because
of our lack of knowledge about C. However, the Lisp version of SQSYM
was too slow and required too much memory. This motivated a rewrite of
SQSYM using the C language. This language provides the flexible definition
of user data types, recursion, and portability. The C programming language
also has compilers available which generate efficient code and has been
quite successful in allowing rapid implementation of the numerous requisite
algorithms.

Automated solution of second quantization equations 13

At this point we have a compiled program, written in C, which reads a
terminal device or disk files to obtain commands which are executed as they are
read. Most of these commands are used to describe the data which is to be
processed. The first group of commands which must be given are the declara-
tions. The declare command must be used to associate a label with a type. For
example the two electron integrals, (/j [kl), are an array of scalar numbers. If we
wish to have SQSYM associate with them the label "h2", then the command
"declare scalar h2" would be given to SQSYM. A list of data types and
descriptions of what they mean is given in Table 1.

The next piece of information needed is a description of the indices needed
to specify a spin orbital. This is given by the direct_product command. The
arguments to direct_product are the names of the spaces for which the direct
product is being taken. Typically, the only spaces needed here are the spin space
and the spatial space. Also given with this command is the breakdown of each
of the spaces into ranges. The spin space can be decomposed into two ranges
each of dimension one, ~ and t , or one range of dimension two. The spatial
orbital basis can be broken down into a particle and hole space. The dimensions
of the particle and hole space can be given as undefined allowing the code which
SQSYM produces to be general. An index for the irreducible representation is
not needed for SQSYM. Finite, nondegenerate point group symmetry can be
fully taken into account in another way and this will be explained later.

After the breakdown of the spin orbital indices is given, the range command
is used to specify subspaces within a space. Ranges within a space are given with
a binary notation, a zero in the nth position indicating that subspace n, as
defined by the direct_product command, is not included in the range and a one
in this position tells SQSYM to include this subspace in the range. For example,
let "space_s" be declared as the space of spatial orbitals. The range specified by
"space_s 10" could be taken to refer to hole orbitals if the quasivacuum has
been appropriately defined in the manner described below. In this case the range
"space_s 01" would have to indicate particles. The command "range holes
space_s 10" would associate with the label "holes" the subspace "space_s 10".

When the expectation value with respect to the quasivacuum is computed,
SQSYM must have some idea of what the quasivacuum is. The quasivacuum is
specified with the vacuum command. The quasivacuum can be given as a direct
sum of direct products of ranges. A common choice of vacuum is the direct
product of the particles with the full spin, both ~ and t , space.

Table 1. A list of the data types accepted by SQSYM

Type Description

scalar
creation
annihilation
external
internal
space
range
expression

a factor which is not an operator
a creation operator factor
an annihilation operator factor
an arbitrary index that is not summed over
an index for which an implicit summat ion applies
a basis such as the spatial orbitals or spin functions
a range specifies a subspace of a specified space such as particles or holes
the basic mathematical quantity which the user manipulates which is a
representation o f a sum of terms

14 c.L. Janssen and H. F. Schaefer III

Some of the declared labels require that more information be given than just
their types. Any label of scalar type requires information about how many
indices the array has, the permissible ranges of the indices, and the permutation
symmetries of the indices. All of this information is required if the resulting
expressions are to be simplified to the greatest extent possible. This information
is conveyed to SQSYM through the factor command. The arguments to factor
are the label which has already been declared as a factor, a range for each index
of the factor, and the permutation symmetries given as products of index
transpositions together with the sign change that the permutation causes. For the
two electron integrals, (0' I kl), the factor command would read "factor h2 space
space space space (+(1 2)) (+(3 4)) (+(1 2)(3 4)) (+(1 3)(2 4))
(+(1 2)(1 3)(2 4)) (+(3 4)(1 3)(2 4)) (+(1 2)(3 4)(1 3)(2 4));". This command
would be issued after the label "h2" is declared as a factor and the label "space"
is declared as a range. Furthermore, the range command is required to precisely
specify the range of "space" before this factor command is issued.

To make it possible to begin constructing expressions, information is needed
about the indices, which are used for two purposes. The indices declared as
external represent an unspecified value and those declared as internal always
occur in pairs and represent a summation over the range which is associated with
that index. The index command is used to associate a range with indices.

The last command needed to begin work is assign, which performs requested
operations on expressions and associates the result with an expression label. The
operations are described with a Lisp-like syntax which allows recursive reuse of
operations. For example, the plus function can be given as one of its arguments
the result of another plus function call. The format of the assign command is
"assign expression_label expression". When the interpreter reads an expression it
first checks to see if it has read an expression label. If so, an internal table
mapping the expression labels to the value of the expression is consulted to
obtain the expression. If instead, a right parenthesis is read, then the interpreter
takes the next word read to be the name of an internal function. This function
is then called and may expect more expressions or other data in its argument list.
If more expressions are needed, then the routine which reads expressions is
recursively reentered.

The functions with are recognized by the SQSYM assign command are
summarized in Table 2. The most important of these are plus, times, canonicaHze,
substitute, combine, term, retirees, normalorder, adjoint, delta, switch, and con-
tract. The most basic of these is term, which allows the user to begin building up
expressions by giving terms in a symbolic format. Let "x" and "y" be declared
as factors, each of which has two indices, and let "i" be an internal index and
"u" and "v" be external indices. Then, the function call "(term + 1 x(u i) y(i v))"
would produce an expression which is a symbolic representation for the matrix
multiply between "x" and "y". The arguments which the term function requires
is first a constant multiplicative factor, followed by the factors and their indices.
The internal indices which have been given in the term function must appear
twice and they are implicitly summed over the range specified for that index with
the index command.

Now that the term function has allowed us to enter expressions, we can
manipulate them with the other functions. The functions plus, times, normal-
order, and adjoint do exactly as their name implies to their arguments. The other
principal data manipulation function is retirees. This function takes several
expressions as arguments. The quasivacuum expectation value is computed for

Automated solution of second quantization equations

Table 2. The functions recognized by the assign command

15

Function Description

adjoint
canonicafize
combine
connected
contract
delta
finked_disconnected
normalorder
plus
restore
substitute
switch
term
times
unfinked
vethnes

vewick

computes the adjoint of an expression
converts each term in an expression to a canonical form
removes duplicate terms
returns the terms with connected diagrams
contracts two external indices in an expression
simplifies delta functions appearing in an expression
returns the terms with linked disconnected diagrams
converts an expression to its normal ordered form
sums a group of expressions
obtains an expression from a disk file
replaces factors with expressions in an expression
switches two external indices in an expression
accepts a symbolic representation of an expression
finds the product of a group of terms
returns the terms with unlinked diagrams
finds the vacuum expectation of a product of expressions using Wick's
theorem
use Wick's theorem to take a quasivacuum expectation value

the product of these expressions. When a quasivacuum expectation value is to be
obtained for a product of expressions, it is not efficient to do the product first
and then take the expectation value. The problem is that many of the terms in
the product will give zero contribution to the expectation value. Knowing in
advance of taking the product that we are going to take the expectation value,
a large number of the products need not be formed. For example, in open-shell
spin-adapted coupled cluster theory, the eighth power in T is required for some
of the equations. Since the T expression has nine terms, computing the product
would produce 98 =43,046,721 terms. But only two of the nine terms can
possibly contribute, meaning that only 28= 256 terms in the product can
contribute to the quasivacuum expectation value. Although it is true that the
user of SQSYM could avoid such excessive computation without using the
specialized retirees routine, to have to explicitly take advantage of these savings
would require long and complex input files, with an increased possibility of error.

The combine, delta, and canonieafize functions do basic simplifications. The
first step in the simplification of an expression is canonicalization. This involves
taking each term in an expression and rearranging its factors to some unique
order. If the factor's indices can be rearranged using the index permutation
symmetries that have been given with the factor command, then the indices must
be rearranged to a unique form as well. Since more than one of a given type of
factor can occur in a term, the arrangement of indices within a factor can
influence the ordering of factors within a term. Thus, the index rearrangement
and term reordering become coupled in a complex way. The canonicalize
function completely solves this problem; that is, no matter how the factors or
indices in a term might be permuted, the canonicafize function will put the term
in the same canonical form. This is important for the combine function, which
searches through an expression for terms which are identical. If two identical

16 C.L. Janssen and H. F. Schaefer III

terms are found, then they are replaced with a single term equal to the sum of
the two original terms.

The delta function attempts to remove Kronecker delta functions from terms.
This can usually be done when one of the delta function's indices is not an
external index. When both of the delta function's indices are internal and
identical, the delta function can be replaced by the dimension of the range over
which the index sums. This is why the dimensions of subspaces can be given with
the direct_product command. If a dimension was given as undefined and a delta
function of this sort was encountered, then delta command would leave this delta
function in the term. Otherwise, the multiplicative factor is adjusted by the
appropriate amount.

Some other simplification routines are useful for rearranging the expressions
to a form that can be conveniently iterated upon when the time comes to apply
the theory to a chemical system. Occasionally, it is desirable to switch two
external index labels within an expression. The switch command does this, given
two external index labels and an expression as arguments. The substitute function
will search through all of the terms within an expression to find a specified
factor, which it will replace with a given expression. Finally, the contract
function allows two external indices to be set equal to each other and summed
over throughout all the terms in the expression.

A summary of the commands used to manipulate and simplify data as well
as some other utility commands is given in Table 3.

The manipulation and simplification of expressions are not enough. Several
more simple tasks must still be accomplished. These include commands to print

Table 3. The commands accepted by the SQSYM interpreter

Command Description

)
adjoints
assign
autorestore

autosave

cvacuum
declare
direct_product
factor
file
fortran
index
memory
print
range
relation

resource
v a c u u m

vadvise
write

redirect the output of a command to the named logical file
indicates which operators are adjoints of each other
associate a label with an expression computed in a Lisp-like language
indicates that all expressions needed by assign are automatically restored
from disk
indicates that all expressions computed with assign are automatically
saved to disk
define the complement to the quasivacuum
associates a label with a type
specify the spaces used to index the one particle basis functions
define a factor's indices and permutation symmetries
associate a logical file name with a filename,
translates expressions into Fortran 77
associate indices with ranges
indicates how much memory SQSYM is using
display various quantities internal to SQYSM
associates a label with a subspace
establish a relationship between a factor and an expression for the
substitute function
print out information about SQSYM's resource consumption
define the quasivacuum
notify the operating system about the paging requirements
write a message to the output

Automated solution of second quantization equations

Table 4. The commands which interface to the compiler portion of SQSYM

17

Command Description

data _ address

dataflow

range_address

result_address

associates an index into an address array with a factor provided to
CORR
compile an expression in an intermediate representation and translate
this IR into the CORR language
gives an index into an address array for the ranges stored in CORR
associates an index into an address array with a factor computed by
CORR

expressions, save and recover expressions and other internal data from disk files,
and give information about SQSYM's resource consumption. Although these are
necessary in such a program their implementation is simple and will not be
discussed any further. A less trivial problem is that of converting the final
expressions into a computer program which can compute wavefunctions and
energies for an arbitrarily chosen molecule. This correlation energy program will
be referred to as the CORR interpreter or CORR.

Four commands, which have been summarized in Table 4, have been
introduced into SQSYM to compile the expressions into a program. Three of
these give SQSYM information about addresses of data that CORR has avail-
able or desires to be computed. The address is an integer which is interpreted as
an index into an address array. The address array is used to convert the address
that SQSYM and CORR have agreed upon to the address where CORR has
actually stored the data. The address array is needed because the size of the data
depends on the particular case CORR is running; thus the locations of the data
can be shifted from calculation to calculation. The address for data that CORR
initializes at the start of the run, such as the Hamiltonian matrix elements, is
specified with the data_address command. Addresses for data which are com-
puted by CORR using the expressions obtained with SQSYM is given with the
result_address command. Sometimes there is not a direct correspondence be-
tween SQSYM's factors and CORR's data. The two electron integrals are
represented by a single label, "h2", in SQSYM, irrespective of the ranges of the
indices. CORR does not necessarily need all of the two electron integrals,
however. It may just need the (ai [bj) block of the integrals, that is the particle,
hole, particle, hole block. This is accounted for in the data_address and
result_address commands by allowing the range for the indices to be specified
with the address for the data. The other command giving address information is
range_address. This tells where the actual dimension of a range can be found
when CORR is run. This information is necessary for the storage allocation of
intermediates. The range_address command is also used to tell SQSYM roughly
how big a range is. This does fix the dimension of each range, but this
information is only used to compute the optimal algorithm for CORR to employ
in converting its data into results; the molecules to which the resulting program
can be applied are not constrained by this specification.

After all of the needed data and result addresses are given, the compilation
of the expressions into an executable program can begin. This is done with the
dataflow command. The first argument to dataflow is a parenthesized list of
subcommands and their arguments. The first invocation of dataflow requires that

18 C.L. Janssen and H. F. Schaefer Ill

the init subcommand be specified to prepare SQSYM's internal static variables.
The result subcommand can be used in the next execution of dataflow. The
argument to result must be a label which was given in a result_address com-
mand. When• the result subcommand is given, an expression must be given as an
argument to the dataflow command. The address of the result is where the
evaluated expression is to be accumulated. The external indices in the expression
correspond to the indices in the factor specified as the argument to result. This
subcommand causes the information in the expression to be converted into an
internal format for use with the done subcommand, which takes this internal
format and converts it into a form which can be executed by the CORR
interpreter. The information CORR requires is written into two files the names
of which are specified using the datafile and modeltile subcommands. The datafile
is a text file listing instructions which the CORR interpreter must follow. These
instructions are written in the CORR language. The modelfile is another text file
which contains information about the intermediates CORR will need to use to
complete a calculation.

2.3. Data representation

This section delves into a part of the inner workings of SQSYM, specifically, the
data representation. The proper choice of the underlying data representation is
very important in a program such as SQSYM. It not only provides the
framework the program uses to perform the desired work, it also gives the
programmer a vehicle to conceptualize the problem. A poor choice would lead to
a less comprehensible program and unnecessary difficulty in the debugging
process. Since many of the needs of such a symbol manipulator do not become
apparent until significant pieces are written, a lack of foresight in the data
representation choice could result in rewriting large pieces of the program. The
data types chosen will be illustrated with C-like program fragments which
contain structure definitions. The structure is one of the user defined data types
provided by C and is all that is needed here. The syntax of the structure
definition is fairly straightforward; it is possible to get a basic understanding of
the data types without understanding much about the C programming language.
If more information about C is needed, Kernighan and Ritchie [38] provide a
short yet complete description.

The most basic data type describes a range. This is the range_t type and is
illustrated in Fig. 1. It is built of two structure members. The first is an integer
which specifies the space the range applies to, usually either space or spin. The
actual value of this integer is a number internally assigned by SQSYM to the
space label at the time the label was declared. In fact, all labels are assigned
integers at declaration time. These integers provide a compact way to refer to the

typedef
struct {

int space;/* The space which this range occupies. */
int sub;/* The subspaces within space which this range covers. */
} range_t;

Fig. 1. The range_t type definition. An index may take on values represented by this structure

Automated solution of second quantization equations 19

labels during the manipulations performed by SQSYM. The second structure
member in the range_t type is an integer which gives the subspaces included in
this range. The subspaces are given as a string of bits. A one indicates that the
subspace corresponding to that bit position is included and a zero means that
that subspace is not included.

The faetor_t type, depicted in Fig. 2, is designed to describe a factor as it
would appear in a term. The integer members n, t, and id give the number of
indices, the factor type, and the factor identifier, respectively. The factor type is
either scalar, creation operator, or annihilation operator in the current imple-
mentation. Such things as unitary group generators could be added in future
versions of SQSYM. The factor identifier distinguishes among the different
factors of a given type. For example, the Hamiltonian and cluster operator are
both scalar factors, so their t members are identical, but their id fields are
different and used to distinguish them. In addition to these members describing
the factor, three arrays are needed to describe the indices. The first array, f, is of
integer type and gives a pointer to another factor within the term. This index is
contracted with an index within the factor pointed to by the f array. I f the
pointer is invalid, then the index is understood to be external, rather than
internal. The second array, i, is also of the integer type. It contains a pointer to
the location of the index within the factor pointed to by f with which the current
index is contracted. I f f indicates that this factor is external, then i contains the
integer corresponding to the label of the external index which belongs here.
Lastly, an array of the range_t type is needed to specify the ranges of the indices.
This factor type can now be used to construct a term.

A term consists of a product of factors with summations over pairs of
indices. The data type which represents terms is te rm_t and has been shown in
Fig. 3. The structure members that are needed to describe a term are n, the
number of factors; hum, an integer giving the numerator of the constant
multiplicative factor; den, the integer denominator; and an array of length
M A X _ F A C T O R of structures of the faetor_t type. The ordering of factors is
important since some of the factors can be operators.

Finally, expressions can be represented by grouping terms together. Since the
number of terms in an expression varies widely, a linked list is much more
desirable than an array. However, it was feared that increased randomness in
memory access and extra overhead in memory allocation and deallocation would
impair the performance of SQSYM if a simple linked list were used, so
expressions were implemented as a linked list of small arrays of terms. This data

typedef
struct {

int n; /* The number of indices. */
int t;/* The factor type of the factor. */
int id;/* The index of the factor in the declaration list. */
int i[MAX_INDICES];/* Pointer to contracted index. */
inf f[MAX_INDICES]; /* Pointer to the contracted factor. */
range_t r[MAX_INDICES];/* The ranges of the indices. */
} factor_t;

Fig. 2. The factor_t type definition. This type of data describes a factor as it would appear in a term.
The symbol MAX_INDICES is a constant specified at compilation time and limits the number of
indices which may appear in a factor

20 C.L. Janssen and H. F. Schaefer III

typedef
struct {

int n;/* The number of factors in this term. */
int hum;/* The numerator of the constant multiplicative factor. */
int den;/* The denominator of the constant multiplicative factor. */
factor_t t~MAX FACTORS];
} term_t;

Fig. 3. The term_t type definition. This describes a term according to its constituent factors. The
MAX_FACTOR symbol is replaced by a constant at compile time. The value of this constant limits
the number of factors which can appear in a term

struct expression_struct {
int n;/* The number of terms. */
int protect;/* Do not purge this expression when done if set to not 0. */
struct expression_struct *p; /* A pointer to the next block of terms. */
term t t[N_TERM];
);

typedef struct expression_struct expression_t;

Fig. 4. The expression_t type definition. This is a linked list representation of a sum of terms and i:
the basic quantity which a user of SQSYM manipulates

type is called the expression_t and is depicted in Fig. 4. The members o f this
structure are an array o f terms, t, o f length N _ T E R M ; the number o f terms, n,
in the array t; and the pointer to the next expression_t in the linked list, p. When
manipulat ing expressions it is impor tan t to deallocate memory for all expressions
which are no longer to be used. Expressions which do not correspond to labels
may be deallocated as soon as they are used. However, SQSYM's assign
functions do not know where its expression arguments came from. Thus, it is
necessary to have an additional member in the expression, the protect member.
This is one if the expression is to be kept after its use and zero otherwise. When
an expression is assigned to a label, all the the protect members are set to one,
until another expression is assigned to that label, at which time the old
expression is deallocated without regard for the protect member. This is the only
time that the protect member is ignored.

Al though this is enough to describe the most impor tan t aspects o f SQSYM,
we have found this scheme to be very memory intensive. For example, when
combining terms, all o f the terms within an expression must be rapidly examined.
I f the entire expression cannot be held in the central memory o f the computer ,
then much time is spent accessing the peripheral paging devices. To avoid this
problem the indexed_expression_t type has been introduced. This type and the
associated expression_index_t type are shown in Fig. 5. The indexed_expres-
s ion_t is implemented like expression_t with a linked list o f arrays. In this case
the length o f each array is M A X _ I N D E X E D _ E X P R E S S I O N . To place a term
in an indexed_expression_t we start by assigning every term an index or hash.
The procedure used to obtain the index is free to be chosen, but it should break
the terms apar t into several different classes o f terms and it must be possible to

Automated solution of second quantization equations 21

typedef
struct {

int n;/* The number of factors. */
int t[MAX_FACTORS]; /* The factor type of the factor. */
ind id[MAX_FACTORS];/* The index of the factor. */
} expression_index_t;

struct indexed_expression_struct {
int n;/* The number of expression groups in this block. */
expression_index_t i[MAX _ INDEXED _EXPRESSION];
expression_t *e[MAX_INDEXED_EXPRESSION],
struct indexed_expression_struct *p; /* Pointer to next block. */
);

typedef struct indexed_expression_struct indexed_expression_t;

Fig. 5. The expression_index_t and the indexed_expression_t types. The former data type is a hash
for terms within an expression. The latter stores the hash chains for the needed hashes

quickly determine the index of a term and compare this to the indices of other
terms. The expression indices in SQSYM currently use the order and types of
factors in the term to generate an index. When a term is added to an indexed
expression, the list of expression indices is scanned until a match with the index
for the term is found. I f a match is found, the term need only be compared with
the terms in the expression associated with the matching expression index to sum
it into the entire expression. Otherwise, a new expression index is added to the
indexed expression list and the term is associated with this new index. In this
scheme, only a small subset of the terms must be examined to find out if the new
term matches a term in the expression and, consequently, this method greatly
relieves the strain on the computer 's memory.

Many other data types are used in the internal working of SQSYM, but all
of these details are not particularly interesting. Our principal goal is to provide
enough information to allow a C programmer to produce a symbol manipulator
oriented towards the second quantization formalism without having to do any
major backtracking or trailblazing throughout the development process. To this
end some hindsight should be added here to warn programmers about the
disadvantages of SQSYM. Of course, it is easy to think of equations to derive
which exceed the limitations of available machines. The symbol manipulation
algorithms in SQSYM are fairly efficient when the required processing time is
considered; however, we have found the required memory to be very large, even
on a MIPS 2000/8 computer equipped with 64 megabytes of central storage. This
does not simply refer to the total memory the program uses, but rather the
amount of central memory needed to prevent paging from becoming a major
bottleneck. Some runs of SQSYM could require a total of 150 megabytes, but do
not cause a very heavy paging load on the system, while other runs could use 80
megabytes total but access all of these data in very rapid cycles, causing heavy
demands on the paging subsystem. One simple way to reduce SQSYM's memory
requirement is to use 8 or 16 bit integers where possible instead of the standard
32 bit integers and this has been implemented. A more difficult approach would
be to avoid fixing the dimensions of the arrays, but, instead, replace the arrays
with pointers to the data and make sure that just enough memory is allocated to

22 c.L. Janssen and H. F. Schaefer III

hold the data. The latter approach would increase the overhead associated with
accessing, allocating, and deallocating the data and for these reasons was not
chosen for use by SQSYM. Going back to modify SQSYM now would involve
considerable work, but for a programmer starting from the beginning, more
memory-efficient approaches are worth consideration, at least.

SQSYM is a fairly large and complex program and simplicity of approach
should always be strived for. Unfortunately, simplicity sometimes conflicts with
efficiency. For example, in the index and factor pointers in faetor_t type there is
some duplication within all of the factors in a term_t data type. To eliminate this
redundancy within a term_t would probably sacrifice much of the simplicity of
the algorithms and should be avoided if possible.

2.4. Data manipulation

As with the previous section on data representation, this section will discuss
matters internal to the SQSYM program, specifically, the principal algorithms
used to manipulate the data. Many of the tasks performed by SQSYM are quite
simple. For example, the addition of two expressions requires only that the
linked lists corresponding to the two expressions be joined together. Since we
chose a linked list of arrays of terms as the representation for an expression, it
is also desirable to copy a few terms into the empty slots at the end of one of the
expressions to allow deallocation of the last expresslon_t link in the other
expression if all of the slots in this link become empty after the copy. The
multiplication of two expressions is also very simple, due to the representation
chosen for terms. The product of two terms involves only copying the factors
from the second term to positions after the factors in the first term and then
offsetting the factor pointers, f, for the second term by a constant amount. Then
the constant multiplicative factors are multiplied and simplified to remove
common factors from the numerator and denominator. We see how the careful
choice of data representation can make basic tasks like these routine. However,
no choice of data representation can make everything simple. We still need to
invest some effort to do certain tasks, the most difficult of which are taking the
quasivacuum expectation value and term canonicalization.

The quasivacuum expectation value is taken with the assistance of Wick's
theorem. Wick's theorem provides a simple way to rewrite a product of creation
and annihilation operators as a sum of normal ordered products of operators
multiplied by Kronecker delta functions. Since the quasivacuum expectation
value of a normal ordered operator is zero, only the terms which contain no
operators survive. As mentioned earlier, when the expectation value of a product
of expressions is needed, it is best to form the product between expressions at the
same time as the quasivacuum expectation is taken.

The procedure begins by setting up arrays describing the operators in each
term of the expressions for which we need the product. This description is
expressed with the type represented in Fig. 6 and is known as the excitation_
eount_t data type. Its members include vmin and vmax which respectively store
the minimum and maximum number of excitations this term can produce relative
to the quasivac~uum. Also included are the minimum and maximum number of
excitations relative to each subspace, smin and smax, respectively. The reason the
minimum and maximum excitation counts are not equal is that the indices of the
creation and annihilation operators can range over several subspaces. For the

Automated solution of second quantization equations 23

typedef
struct (

int vmin; /* min number of excitations relative to the vacuum */
int vmax;/* max number of excitations relative to the vacuum */
int smin[MAX_SPACE][MAX SUBSPACE];/* relative to subspace */
int smax[MAX_SPACE][MAX_SUBSPACE];/* relative to subspace */
} excitation_count_t;

Fig. 6. The exeitation_eount_t type. This stores information about the action of operators within
terms and expressions

expressions that are being multiplied an overall excitation count is determined
for each by examining the excitation count for all of the terms within each
expression. Finally, starting from the leftmost expression in the product, the
cumulative excitation count is obtained for each expression.

With this information on hand we can begin efficiently building the product
of the expressions. The first term from the rightmost expression is chosen and its
excitation count is compared to the cumulative excitation count. I f the cumula-
tive excitation count for the expressions from the left can potentially negate the
cumulative excitation count for the terms from the right, then the next term in
the product is selected f rom the next expression to the left. Otherwise, the
contribution to the product involving all of the terms selected so far will be zero,
since by the time we get to the quasivacuum on the right we must have
something which will annihilate it. In this case another term is selected until one
which gives a nonzero contribution is found. I f such a term is found, the process
proceeds to the next expression to the left of the expression containing this term.

At some point a term from each expression may be selected such that the
quasivacuum expectation of their product will be nonzero. This term is handed
to a routine which computes the fully contracted part of Wick's theorem and,
hence, obtains the quasivacuum expectation value. The routine rewrites the term
in such a way that all of the fully contracted terms produced by this term are
efficiently found. For the purposes of finding the contractions the operators are
the only factors that are needed. Furthermore, whether an operator is a creation
or annihilation operator is not as important as its action on the quasivacuum.
Operators are classified as R or L, indicating whether they annihilate the
quasivacuum from the left, R]0) = 0, or the right, <01L = o. Some operators can
annihilate the vacuum from both directions, because the range of their indices
can span more than one subspace, so these can be R or L operators. Arrays are
formed giving the action of each operator upon the vacuum and the type of each
operator, which is either creation or annihilation in the current implementation
of SQSYM, and this is all the data that is needed to begin forming the
contractions. Wick's theorem states that contractions are formed only between
pairs of operators with an R-type operator to the right and an L-type operator
to the left. The contraction routine starts by looping through all available pairs
of L and R operators. For each pair it recursively calls itself to find the next pair.
When it finds that no operators are left, it calls another routine which converts
a list of contractions into a term and adjusts its sign appropriately. The term is
then canonicalized and summed into an indexed expression. Canonicalization
and summing must be done as soon as possible to prevent an enormous scratch
expression from being formed which would have many redundant terms.

24 C.L. Janssen and H. F. Schaefer III

The canonicalization procedure implemented in SQSYM is exhaustive. That
is, if two equal terms which are not written in the same form are presented to it,
then they are guaranteed to be rewritten in identical forms. Here, as in the
Wick's theorem routine, a representation for the term must be chosen which is
more suitable for this procedure. It is convenient to stop viewing the term as a
product of factors which have indices contracted with indices in other factors
and start viewing the term as a single factor, the superfactor, with many indices.
To form the superfactor the scalar factors in the term must first be reordered to
a standard form. This is just a simple sort; the relative ordering of factors which
have identical ids is not yet a concern. The superfactor is then formed. Three
arrays are used to describe the superfactor. The index array is equivalent to the
i member of the factor_t data type. The range array is equivalent to the r
member of the factor_t type. There is no equivalent to the f member of factor_t,
because the term consists of only one factor in the superfactor representation.
Finally, we need the index permutation symmetries of the superfactor. This
permutation group is not simply the direct product of the permutation groups of
the constituent factors, because there is a possibility that a given type of factor
appears twice in the term, so we must include the direct product of the symmetric
groups describing the permutation of sets of indices among the identical factors.
Now we are ready to search for the canonical form of the term.

The search begins by looping through all superfactor permutations. Each
permutation is applied to the superfactor index array. The permuted index array
is then compared to the most canonical index array found so far. The most
canonical index array is initially set to the unpermuted superfactor index array.
If a permuted index array is more canonical than the most canonical index array,
then the most canonical index array is replaced by the permuted index array.
After all permutations are exhausted the most canonical index array contains the
canonical superfactor. The definition of "more canonical" is somewhat arbitrary.
The method used by SQSYM is to compare the permuted index array to the
most canonical index array, index by index, starting from the left. If the value of
the index array member for the permuted index is less than the value of the most
canonical index, then the permuted superfactor is more canonical than the most
canonical superfactor. If the values are the same, then the next indices to the
right are considered. If all of the indices are identical, then the range arrays are
examined in a similar manner. Since each index array member is repesented as an
integer and each range array member is expressed as two integers, the compari-
son of these members is a computationally efficient process. For canonicalization
to be truly exhaustive there is one restriction on the term. All of the ranges in the
terrn must be a simple subspace. For example, a range may be particle or hole
but cannot indicate a summation over both subspaces. This restriction is not
intrinsic to the canonicalization algorithm; it is only needed if all equivalent
terms are guaranteed to be transformed into identical forms.

The number of superfactor permutations can become quite large, with several
thousand permutations commonly needed. Less computationally demanding
algorithms could be developed which do not rigorously canonicalize the term.
The faster algorithm could be used to combine and eliminate the majority of
terms and then a complete canonicalization could be performed to finish the
simplification of the expressions. However, it has been found that canonicaliza-
tion is not the limiting step in SQSYM. The time spent in various routines during
typical calculations was obtained and showed that canonicalization was second
to the quasivacuum expectation value in processor time used during the symbol

Automated solution of second quantization equations 25

manipulation process. Translation of the equations into an executable form was
found to require more processor time than the canonicalization and quasi-
vacuum expectation processes combined.

2.5. Executable code generation

The simplified expressions generated by SQSYM can contain thousands of terms.
It would be difficult to write a program which uses these equations to compute
the properties of a molecule. Thus, SQSYM must further process the expressions
and compile them into a form that is suitable for execution. One possible
approach would be to convert the expressions directly into Fortran. An advan-
tage of Fortran is its wide availability, including vectorizing and paraUelizing
dialects. Compilation into Fortran was, in fact, first implemented and still
remains an option; however, difficulties were encountered. The Fortran programs
produced were so long that compilation times for the Fortran compiler were
significant and in some cases the compiler even abended due to the length of the
code. Currently, Fortran is avoided as the target language of SQSYM. Rather,
a custom language has been developed which simply and compactly describes
the computation of an expression. This language will be called the correlation
energy language, CORR, and the CORR interpreter is the program which will
execute the file containing the CORR language and compute the correlation
energy.

The commands which must be a part of the CORR language are best
understood by first examining the procedure for converting an expression into an
executable program. Let us start by considering an expression with one term:

astuv = XuijkYvutZk~s,. (2.14)

Assuming that each index ranges from 1 to n, the result, a, can be most
straightforwardly computed with 2n 8 floating point multiplications. This would
be done by using a loop for each index. However, a considerably more efficient
approach exists. Suppose we break the formation of a into two binary products.
The first binary product forms an intermediate array which is then contracted
with the remaining array to form a. Table 5 illustrates the possibilities. This table
lists the binary product being considered, the result of forming the binary
contraction, the number of floating point multiplications required, the amount of
memory needed for intermediates, and the cumulative number of multiplications
required for the algorithm. The least expensive routes use a total of 2n 6 floating
point operations and require intermediate storage for n 4 floating point numbers.
One of these least expensive routes involves first forming the intermediate ~ by

Table 5. The computational complexity for various evaluation routes for a sample term

Binary product Result Mult. Memory Cum. mult.

Xuijk Yvijt ~ v l n 6 n 4 n 6

Xui jk 2k ls t fluijlst n 7 n 6 n 7

YvutZklst ~vijkst n 7 n 6 n 7

O~ukvlZklst astuv n 6 _ 2 n 6

f lui j ls tYvi j l as tuv n 7 _ 2 n 7

Yvijkst Xuijk astuv n 7 _ 2 n 7

26 c.L. Janssen and H. F. Schaefer III

contracting x with y and then forming the result a by contracting ~ with z. Given
a term, SQSYM's dataflow command will examine all of the possibilities and
choose the least computationally intensive method. If two terms have the same
computational complexity, then the method requiring the least space for the
intermediates is chosen. The principal deficiency of the term optimization
algorithm implemented in SQSYM is that index permutation symmetries are
ignored. However, no implementations of such an algorithm will be able to
guarantee that the generated procedure will have minimal computational com-
plexity. This is because exact information about the ranges of the loops are not
known at compile time. Furthermore, the use of point group symmetry consider-
ably complicates the matter. A good job of optimizing the terms can be done
without all of this information by giving SQSYM an approximate dimension for
the ranges of the loops. These dimensions are represented by two integers, i and
j, and are taken to be in-'. The integer n is unspecified and its precise meaning is
arbitrary. We typically take n to be the number of occupied orbitals, so i and j
both equal one for the hole orbitals. Since the number of particle orbitals is
usually larger than the number of hole orbitals for a reasonable basis set, i is set
to two for particles while j remains one. In open-shell triplet calculations the size
of the range for the singly occupied orbitals would be two; thus i would be two
and j would be zero.

Unfortunately, many more considerations arise when we need the optimal
algorithm for computing the result of an expression consisting of more than one
term. This is because some of the intermediates may have already been computed
and if they are retained in storage instead of deallocated after their first use, they
can be used again at the expense of an increased memory requirement. The
optimal algorithm for computing a single term may no longer be optimal when
the entire expression is considered. Another algorithm may involve an intermedi-
ate which has been computed beforehand and might become less computation-
ally expensive when the entire expression is considered in the optimization
process. Thus, the optimization of a term in an expression becomes coupled to
the optimization of all other terms in that expression. In fact, the problem is even
worse than this; the optimal algorithm depends upon all terms in all of the
expressions which are to be evaluated, not just the expression in which the term
under study appears. The complete minimization of the computational complex-
ity for the evaluation of a set of expressions has not been implemented in
SQSYM. Even if an exhaustive minimization were implemented, the processor
time required would prohibit its use in all but the simplest cases.

The simplified approach taken in SQSYM is invoked with the dataflow
command. This command is first used with an initialization option to prepare the
dataflow routines. Following initialization, dataflow can be executed any number
of times with expressions as arguments. These invocations build up an intermedi-
ate language which contains information about the expression. The intermediate
language is implemented with data structures consisting of the members, op,
argl, arg2, and result. The members argl and arg2 specify the addresses of the
data which are to be used and result gives the address of the data to be created.
In general, the ordering of argl and arg2 is important. The op member is
assigned to one of four operations to be performed upon the arguments,
contract, accum_delta, free, and ptrace. Sometimes these operations require
supplemental information which is stored in the detail member.

The contract operation indicates that a binary contraction between the two
arrays is to be done. The detail member is used to specify the external indices and

Automated solution of second quantization equations 27

the indices to be contracted. The contract operation generates a new piece of
data, the address of which is placed in result.

When the intermediate language has used this temporary datum for the last
time it can be deaUocated with the free operation which takes one argument and
produces no result. The actual deallocation of the data does not take place in
SQSYM, since the data is never allocated in SQSYM. The storage is really
allocated and deallocated when the CORR interpreter is run; however, the
dataflow component of SQSYM must keep track of the data that the CORR
program is going to manipulate, so that memory can be efficiently used when
CORR is run.

The accum_delta operation takes one argument and sums it into the result.
This is very different from the contract operation which creates a new result. The
result of aceum_delta is preallocated and is specified as an argument to the
dataflow command. The aeeum_delta operation is so named because it also
allows the accumulation of data which can be written as an array or the product
of an array and a delta function between external indices. Products of delta
functions between external indices and arrays sometimes arise and handling these
cases directly with aceum_delta avoids the waste of central storage which would
result from actually forming the product of the delta function and the array
before the accumulation step.

The ptraee operation takes one argument and allocates a result. It forms
contractions over pairs of indices within the single argument. Given in the detail
member are the lists of external and internal indices along with which pairs of
internal indices are contracted.

When the dataflow routines optimize a term, all possible ways of forming the
result through binary contractions of factors and intermediates are considered.
As each contraction is considered the dataflow structure is inspected to see if that
contraction already exists. I f so, the previously computed intermediate can be
used instead of the contract operation and the processor time that would have
otherwise been needed for this contraction is not added to the computational
complexity for this term. This type of optimization is known as common
subexpression elimination.

The dataflow structure is organized into levels. Level zero consists of
statements in the intermediate language which define the known arrays, such as
the Hamiltonian matrix elements and the cluster coefficients from a previous
iteration. Level one contains statements which depend on data in level zero; level
two's statements depend on data produced in level one and the data defined in
level zero; and so on, but no level uses data which is generated on the same or
following levels. The rationale for this sort of organization is to allow parallel
execution of the statements on the same level. Whether or not parallelism is
achieved depends on the implementation of the CORR interpreter. The current
CORR interpreter is written in Fortran 77 and with some modifications could be
parallelized on any shared memory multiprocessor running the UNIX operating
system or on multiprocessor IBM S/370 machines if a parallelized dialect of
Fortran [39] is installed. Current implementations of the CORR interpreter do
not use parallelization. In this case, it is best to generate only one CORR
statement per level, since this will allow deallocation of scratch arrays at the
earliest possible time and will lighten the memory requirements.

After all terms have been represented in the dataflow struoture, the dataflow
command is invoked with options which tell it to convert the intermediate
representation into the CORR language and place it in an output file. The

28 c.L. Janssen and H. F. Schaefer III

CORR language is nearly identical to the intermediate representation, except it
is converted into a text representation so that the same CORR language files can
be ported to a variety of computers. The contract, free, aeeum_delta, and ptrace
operations respectively translate directly into the CNTR, FREE, ACDL, and
PTRA commands in the CORR language. However, an additional command
must be added if parallelized implementations of the CORR interpreter are
desired. This command is LEVL, which can be used by the interpreter to
determine which statements can be executed simultaneously. The datallow com-
mand produces the LEVL command whenever it begins translating a new level
in the dataflow structure.

Although the CORR language program produced by SQSYM is optimized
to some extent, there are many things which can be done to improve the
execution time of the CORR program without modifying the CORR interpreter.
The only optimization of the dataflow structure currently implemented is full
term optimization with common subexpression elimination. The contractions
between factors and intermediates have commutative and associative properties
which can be used to further simplify the datafiow structure. These properties are
not yet utilized in SQSYM. Also, even though the number of statements on a
given level is kept at one to minimize waste of memory, the memory is not used
as efficiently as possible. This is because rearrangement of the dataflow levels can
result in a smaller amount of memory dedicated to intermediates at any given
time. The optimal rearrangement of levels would require the least amount of
memory. Rearrangement to the optimal ordering of levels would be extremely
difficult. One reason for this difficulty is that actual dimensions of each of the
subspaces are not known at translation time. Another problem is that the way the
CORR interpreter deals with memory may create areas of temporarily unusable
memory in the process of repeatedly allocating and deallocating memory, thereby
increasing the total memory requirement in ways unknown to SQSYM.

Finally, even if approximations are made about the dimensions of the arrays
and the memory allocation and deallocation procedures that CORR uses, the
number of levels can become enormous. For example, suppose we are optimizing
the CORR language program for execution on a uniprocessor machine. Then, it
is desirable for each level to contain only one operation, since parallel execution
is not of use on a uniprocessor machine and the use of only one operation per
level allows the most flexible optimization of memory use. However, some of the
dataflow structures contain very many operations. For one of the open-shell
coupled cluster techniques discussed in Sect. 3 there are over 15,000 operations,
making even approximate optimization a formidable computational task. Opti-
mization of the use of memory is not performed in the current implementation
of SQSYM, except that intermediates are deaUocated after their last use. No
attempt is made at level rearrangement. When more powerful machines are at
our disposal, once again work along these lines will continue.

2.6. The CORR program

We have learned how to generate a partially optimized CORR language pro-
gram. Now a program, called the CORR interpreter, must be developed to
execute this language. Another language must now be chosen to implement the
CORR interpreter and we chose Fortran 77 because it is available on all of the
machines to which we have access. In addition, our research group has already

Automated solution of second quantization equations 29

developed Fortran language programs to compute and write to disk the matrix
elements of the Hamiltonian, although it should be pointed out that the use of
Fortran has greatly obfuscated many of the algorithms employed. Other lan-
guages, such as C and object oriented versions of C, should be considered by
anyone beginning a project like this from scratch.

The CORR program is actually a fairly short and simple program. Most of
the difficult work has been moved out of CORR and into a library, DTLIB,
which provides a variety of routines for manipulating multidimensional arrays of
real data, such as the Hamiltonian and cluster coefficients. The DTLIB routines
allow the arrays to have index permutation symmetries and point group symme-
try, with the restriction to finite nondegenerate point groups. Cole and Purvis
[40] have developed a routine similar to one of the primary DTLIB routines,
namely that routine which takes the contraction of two arrays. Their implemen-
tation does not permit index permutation or point group symmetries; however,
it enjoys the advantage of being able to work with arrays that are stored on disk
devices. The DTLIB library requires that all arrays be kept in the fast central
storage of the computer, although, with some more work, these arrays can be
disk resident and efficiently accessed. This work is planned for future revisions of
the DTLIB library.

Before CORR is executed, another program, SORTER, must be run to sort
the Hamiltonian into the format that DTLIB uses. When CORR starts up, it
reads in the arrays produced by SORTER. All the addresses of these arrays are
kept in another array, the address array. The commands which CORR interprets
refer to locations in the address array, rather than the address of the array itself,
since these addresses vary from case to case. Correspondences between locations
in the address array and the factors are made known to SQSYM through the
data_address and result_address commands which interface with the compiler
portion of the SQSYM interpreter/compiler. The CORR program must
make identical correspondences when it initializes the address array. After
CORR completes its initialization it begins interpreting the CORR language file
produced by SQSYM. After the interpretation is finished, the result of the
expression evaluation is placed in the array pointed to by the address array
elements specified in the result_address command. For all of the correlation
energy calculations which CORR currently can do this represents only one
iteration. The result of evaluating the expressions is used to update the wave-
function guess for the next iteration. For example, in coupled cluster theory,
the resulting expressions should be zero when the equations are converged. If
the root mean square of the result coefficients is above some tolerance, then
another iteration begins. The cluster coefficients for the next iteration are
obtained by absorbing the error in each result into the cluster coefficient
which is dominant for that result. Note that the CORR language has no
provisions for iteration or updating the cluster coefficients. These could be
included, but the CORR language is probably best kept as simple as possible.
Since extrapolation methods will be eventually incorporated into CORR, it
would be desirable to be able to take advantage of these methods without
rewriting the CORR language file, which is most easily done if the CORR
language does not explicitly iterate.

It has been mentioned earlier that execution of the CORR program could be
accelerated if SQSYM would more thoroughly optimize its intermediate lan-
guage and, thus, the CORR language program into which it is translated.
However, the performance of CORR is not solely determined by the quality of

30 C.L. Janssen and H. F. Schaefer III

code that SQSYM produces. The CORR program does time-consuming opera-
tions on large pieces of data and the performance of the CORR interpreter for
a given CORR language input must also be scrutinized. The SQSYM program
and the CORR program both allow index permutation symmetries to be
specified, but, due to limitations in both SQSYM and CORR, the intermediate
arrays produced by the CNTR command, which forms a contraction, have no
index permutation symmetries. This wastes both processor time and storage. A
benefit provided by CORR is the efficient method it uses to form contractions.
First, the arrays involved are repacked in a way that allows the contraction to be
expressed as a matrix multiply. After the matrix multiply, the inverse of the
packing procedure is applied to place the resulting matrix into a multidimen-
sional array. This is done one symmetry block at a time, so full advantage of
point group symmetry is taken. This method does introduce overhead associated
with repacking the arrays, but, for typical electronic structure theories, the ratio
of overhead to processor time would tend to zero as the size of the system
studied tended towards infinity. For example, in CCSD, the largest array has a
size that goes roughly like n 4, where n is the number of doubly occupied orbitals.
Thus, the overhead associated with repacking the array increases with n in a
manner no worse than n 4. However, the most computationally intense terms
increase like n6; thus, for large enough n, the overhead associated with repacking
becomes insignificant. Also, the most computationally intense term becomes a
matrix multiply between two matrices of dimension n 2. A matrix of this size is
large enough to make efficient use of vector architectures as well as allowing the
use of fast matrix multiply algorithms [41] which can reduce the n dependence of
the processor time needed for these terms from n 6 t o n 5"61 or less.

3. Applications of SQSYM

The symbol manipulator discussed in Sect. 2 has been applied to a variety of
electronic structure theories, some well-known and some not yet discussed in the
literature. The better-known methods include configuration interaction with
single and double (CISD) excitations from a single reference. For this case
SQSYM was used to produce spin-adapted equations for closed-shell and
high-spin open-shell (HSOS) types of reference functions. These methods are
presented to further illustrate the use of SQSYM. The correlation energies
produced by SQSYM/CORR for these methods agree with energies generated
independently with a graphical unitary group approach (GUGA) CI program
[42]. The spin-adapted closed-shell coupled cluster case has also been investi-
gated and SQSYM/CORR was found to produce correct results for this case as
well; however, this will not be presented in the present work.

The extension of CCSD theory to the HSOS case is of primary interest in this
work and three avenues have been pursued along this line. The first is the
implementation of the method of Rittby and Bartlett [28] where a spin unre-
stricted cluster operator acts upon a restricted Hartree-Fock (RHF) reference
function which is of the HSOS type. Spin contaminated contributions to the
energy do not occur with this technique, but the equations for the wavefunction
are spin contaminated. Second, a method which uses a cluster operator which is
chosen using the criteria set forth by Nakatsuji and Hirao [29]. While this cluster
operator does not produce spin contamination when operating upon the refer-
ence wavefunction the cluster operator does produce states of incorrect spin

Automated solution of second quantization equations 31

symmetry when its square operates upon the reference. The spin contamination
is completely projected out in the equations for the wavefunction and energy in
this case. Finally, a method which uses a cluster operator which commutes with
S 2 is presented. No spin contamination arises at any point in this method.

3.1. The closed-shell CISD equations

Let]0) be a closed-shell RHF reference function. The CI wavefunction, [~u), can
be written as a linear combination of 10) and excitations thereof, X[0):

I = p0) + xl0) , (3.1)
where I~g) is normalized such that (~u[0)= 1. The spin-adapted excitation
operators for CISD can be written in terms of the unitary group generators,

= Z aLaq , (3.2)

to form a linearly independent, although nonorthonormal, set of excitations
from the reference:

X = X~ + X2, (3.3)

where

X~ = ca E a, (3.4a)

)(2 = c~a Eb E~ . , (3.4b)

and the c~ and c) ~a are arrays which are yet to be determined. The indices i and
j refer to orbitals which are doubly occupied in the reference and the indices a
and b refer to those orbitals which are not occupied in the reference. The c arrays
possess the index permutation symmetry

c jt a ab = c u . (3 . 5)

The Schr6dinger equation, in terms of the normal-ordered Hamiltonian, may
be written

H .] ~) = Ecorr[~). (3.6)

The energy can be computed by projecting both sides of this equation by (0[to
get

E~orr = (0[Hn [~). (3.7)

The equations for the c arrays are determined by projecting Eq. (3.6) from the
left by the singly and doubly excited states:

gcorr(0lEL I~) = <O[E~HI~)
and

Eeorr<O[EJb E i I~/> = <0IELELHI~ >.

(3.8a)

(3.8b)

However, these equations are not yet in the correct form for iterating upon. For
a given choice of i, a, b, and j the projection for X2 contains large contributions
from two c elements, cj b.a and ba c o. , both of which multiply diagonal elements of
the Fock matrix. There are two ways to get a large contribution from only a

32 C.L. Janssen and H. F. Schaefer III

single c element; we can take linear combinations of the above equations or we
can change the projection scheme. Changing the projection scheme has the side
effect of simplifying the derivation of the equations as well. A possible choice for
the new states which project out the c equations are the determinants

a~ai~ I O) (3.9a)

and

a~ai~a~ai# 10> (3.9b)

which are not eigenstates of electron spin. Equation (3.9a) can be expressed as a
linear combination of

E~ IO> (3. lOa)

and

(a * ~ a i ~ - a~aaia)]O>. (3.10b)

The latter of these states is a triplet. Thus, when it projects upon any singlet spin
function, such as I~ > or H] V >, it will give a contribution of zero and we are free
to take linear combinations of this triplet state with the original symmetry
adapted state to obtain a state which can be used to project the equations. In a
similar manner, the above doubly excited determinants, Eq. (3.9b), can be
obtained by linear combinations of states with states of spin symmetry different
than the reference as well as states of the correct spin symmetry. When linear
combinations of states of the correct spin symmetry are used to form a projector,
it is important to only transform among the set of states which were in the
original set of projectors. This restriction is trivial to observe in the closed-shell
case; the only way to violate it is to include triply excited states. However, in the
open-shell case the excitations are limited to the interacting space and it is easy
to accidentally project upon an undesired state, even though it is of the
appropriate spin symmetry and appears to have only double excitations in it.
This will be discussed in more detail below.

3.2. The high-spin open-shell CISD equations

The problem to be solved here is exactly the same as in the closed-shell CISD
case, except the reference function now contains some orbitals with only c~ spin
electrons. The excitations which interact with the reference through the Hamilto-
nian are

E I0>, (3.11a)
E a 10>, (3.11b)

Exl0>, (3.11c)

E~E a 10>, (3.1 ld)
b a ExE i 10>, (3.1 le)

EyE~[O), (3.110

EYE'y 10), (3.1 lg)
b a EyEx 10>, (3.11h)

Automated solution of second quantization equations 33

and

E Y E ~]0), (3.1 li)

where the x and y indices refer to those orbitals which are singly occupied in the
reference. To form the CISD wavefunction coefficients must be associated with
these exictation operators. These coefficients are

c a , (3.12a)

c~, (3.12b)

c x, (3.12c)

cjt[' = C ijab, (3.12d)

b~ (3.12e) ¢x i ,

e~ ~, (3.120

cjy, ~ = - cb ~ = - c~ y = c~ y, (3.12g)

ba ba ab __ ~b (3.12h) Cy x ~ - - C x y ~ - - C y x - - C x y ,

and

cyff. (3.12i)

As with the closed-shell case it is easier to project upon a simpler set of
states. A possible set is

and

a ~ a i ~ 10), (3.13a)

ata~ax, 10), (3.13b)

a ~ a i p 10), (3.13c)

t t aaal ai~ l ab~zaj~2]O), (3.13d)
t t ax¢aiaaa~aj~]0), (3.13e)

a ta~ax, a tb~ai~ 10), (3.130

a~aa~aty¢aj# [0), (3.13g)

a ~ a ~ a t b ~ a y ~]0), (3.13h)

a t a ~ t
xfl ifl'act~yct [0). (3.13i)

Note that in these states some of the summations over the spin variable, a, could
not be replaced by an ~ or ft. This is necessary to avoid projecting by states that
are linear combinations of states from both inside and outside of the interacting
space. The effect of partially including some of the noninteracting space in the
projection would typically be an increase in the computed CISD energy, since the
noninteracting space can interact through the Hamiltonian operator with only
states excited from the reference. However, this is in contrast to those CISD
calculations where the noninteracting space is included in add i t ion to the interact-
ing space. The extra configurations introduced in this case would always lower
the CISD energy, usually by only a small amount.

34 c.L. Janssen and H. F. Schaefer III

3.3. High-spin open-shell coupled cluster singles and doubles

The ideal CCSD theory for the HSOS reference would allow direct comparison
to the closed-shell CCSD energies and have similar computational resource
requirements. Thus, desirable qualities in the HSOS CCSD method would be the
use of a reference function optimized for the state under scrutiny and a cluster
operator which consisted of all the excitations which can interact with the
reference wavefunction through the Hamiltonian. Also, a wavefunction which is
an eigenfunction of the S 2 operator is greatly preferred. The ideal HSOS CCSD
method would be obtained by substituting the excitation operator, X, introduced
in the above HSOS CISD method for the closed-shell cluster operator and
substituting the HSOS reference directly for the closed-shell reference. It should
be mentioned that since the HSOS reference can be written as a single determi-
nant, the reference can be considered as the quasivacuum. This allows expecta-
tion values with respect to the reference to be evaluated directly using Wick's
theorem.

The wavefunction in terms of the cluster operator, T, and the reference, [0)
is written

where

17t) = er l0) , (3.14)

T = t~E~ I O) + t~E~ 10) + t~.E~[I O)
ba b a ba b a x a x a + t j, E~ Ei 10) + tx, E~E~ IO) + t j, E~ E i Io>

t b a lT.b E a -4- t Y . a ~ ? (E a + -j,tY~F~E~-j --, 10> + -yx--y--x i0> -- -ix - j - x i0> • (3.15)

Substituting 17 ~ > into the Schr6dinger equation gives

Hnerlo> = Ecorrerlo> (3.16)

and projecting on the left by e - r we obtain

Heed0 > = Ecorrl0>, (3.17)

where

Herr= e - t r i ne r. (3.18)

The effective Hamiltonian, H~fr, can be rewritten as a multicommutator expan-
sion:

1 1
Hef t = 1 --[- [H, T] + 7 [[H, T], T] + ~ [[[H, T], T], T]

1
+ ~. [[[[H, T], T], T], T] + (3.19)

For the closed-shell case this expansion terminates after four commutators.
Furthermore, for the closed-shell case, the effective Hamiltonian can be written
as the connected part of Her:

H~f; = (He r) • (3.20)

Unfortunately, neither of these observations hold in the HSOS CCSD method.
The breakdown of these two simplifications occurs because T is made to preserve
the spin of any state it acts upon. For example, the term in T which is

Automated solution of second quantization equations 35

responsible for single excitations from the open-shell orbitals to the particle
a ~" which contains an annihilation operator that acts upon orbitals is txaa, ax~,

open-shell orbitals with fl spin. The annihilation of orbitals unoccupied in the
reference and the creation of electrons in orbitals already in the reference cause,
when quasivacuum expectation values are taken, contractions between the
Hamiltonian and/or T operators and T operators to the left of these. The new
T - H and T -T contractions did not exist for the closed-shell case, which only had
t t - T contractions, and are the cause of considerable complexity in the HSOS
case. The T - t t contractions are what make the relation Herr = (He r) invalid,
despite the fact that the multicommutator expansion for Herr makes it a con-
nected quantity.

In addition to the equivalence of the reference and the quasivacuum, which
other open-shell coupled duster cases formulated in this way might not enjoy,
the HSOS CCSD case does have another simplification, and that is that the
multicommutator expansion does in fact terminate after eight commutators [43]
no matter how many singly occupied orbitals there are in the reference. This is
because all of the terms in the T operator contain at least one particle or hole
index. Particles and holes in the T operator are always created, or, said another
way, electrons in particle orbitals are always created and electrons in hole
orbitals are always destroyed. Equivalently, the new T - t t and T -T contractions
only arise for the open-shell orbitals. Projecting onto doubly excited states can
annihilate at most a total of four particle and hole states. The Hamiltonian has
at most two-body terms, and therefore, at most, can annihilate four particles and
holes. If at most eight total particle and hole excitations can be annihilated, at
most eight total particle and hole excitations may be created by the T operators;
otherwise the quasivacuum expectation value will be zero. Thus, at most eight T
operators may appear in a term in HSOS CCSD theory and the multicommuta-
tor expansion must terminate after eight commutators.

The SQSYM program discussed in Sect. 2 has been used to derive the HSOS
equations. Care has been taken to make SQSYM an efficient method for deriving
second quantization equations. Despite this, some of the derivations are quite
demanding. For example, the spin-adapted closed-shell CCSD equations could
be derived in a few minutes on a Sun 3/80 workstation. The 202 seconds it took
to derive the HSOS triplet terms which were quadratic in T on a MIPS 2000/8
computer, over six times faster than the 3/80, demonstrate the formidable
complexity of the equations. Unfortunately, this is just the beginning; the
number of terms arising which are cubic in T explodes and the time taken to
derive these terms is 3,912 seconds on the MIPS machine. The number of terms
quadratic in T is 4,083 and the count of the cubic terms is 12,551. The time
needed to evaluate terms with very high powers in T will eventually drop off
because SQSYM can recognize which products of T operators cannot make a
contribution to the quasivacuum expectation value. The rate limiting step in
SQSYM is not the derivation of the equations, however. Most of the processor
time is used to compile the equations into the CORR language, for which the
SQSYM program required, for all terms up to the cubic power in T, 38,279
seconds. Improvements in SQSYM and in computer performance will make the
derivation of equations with higher than cubic powers in T possible, but it will
be argued in Sect. 4 that these terms will not significantly change the answer for
most problems.

The code produced does have the best possible n dependence, where n is the
number of electrons. The memory requirement is n 4 and the processor time

36 C . L . Janssen and H. F. Schaefer III

requirement is n 6 for HSOS CCSD. However, the multiplicative factors for these
n dependencies are much larger with the current implementation of SQSYM than
they need to be, so current applications of HSOS CCSD theory to actual
molecules tend to consume more resources than necessary. Future improvements
to SQSYM and the CORR program will relieve some of this computational
burden; however, an exhaustive optimization of the equations is much too time
consuming, so some manual assistance must be given to SQSYM. One method
of providing assistance to SQSYM is to explicitly recognize linear combinations
of cluster coefficient which arise naturally in the equations. For the closed-shell
case an important improvement in the algorithms is obtained by working with

a b (3.21) z~ b = t'i~ + t i tj

instead of just t~ b. In the HSOS CCSD there is a possibility that great
simplifications could be made by working with a z~j b expressed in terms of
expressions like

a b (3.22a) t i t j ,

t a t b t x t Y (3.22b) x - y ~ i ~j ,

t a b t x y (3.22c) x y - i j ,

and so on. Similar intermediates might be found for the other two-body cluster
coefficients as well, but it is as yet unknown how much benefit the use of these
intermediates will provide. Access to faster computers is needed to continue
work along these lines.

3.4. The high-spin open-shell partially spin-adapted CCSD method

The equations for HSOS CCSD theory are quite cumbersome. A simplified
approach akin to that used by Nakatsuji and Hirao [29] has also been investi-
gated. Nakatsuji and Hirao recommended using a cluster operator which gener-
ates only spin eigenfunctions when it operates upon the reference wavefunction,
but removing all operators which give rise to the T - T and T - H contractions,
which cause much of the difficulty in HSOS CCSD. This gives a wavefunction
which has spin contamination in the terms with two or more powers in the
cluster operator, which suggests projecting out the spin contaminants. Nakatsuji
and Hirao never implemented this for more than single excitations from the
reference. In fact, for triplet states they have employed a completely different
method [31], which starts with a reference which is not an eigenstate of S 2,
perhaps because the complexity of the equations for the method they had earlier
proposed prohibited its further development. However, SQSYM has no problem
with these equations; in fact, they are quite a bit simpler than the fully
spin-adapted HSOS CCSD equations.

The cluster operator in this method, which will be called the high-spin
open-shell partially spin-adapted CCSD method (HSOS PSACCSD), is obtained
directly from the HSOS CCSD cluster operator by eliminating the components
of the cluster operator which annihilate the reference. Thus, for the cluster
operator we are left with

a a a f x f tb .aEbF..q ~bat,~f a i~i'a t xaa" f , r , , iWa
Tps A = t~ E i + txa~ax~ + t i a x B a i # + .j~ _ j _ ~ + "xi ~b~t~xctL'i "~- t j i ~ x f l ~ j f l L ' i

+ yx , , b a t * ya * * (3.23) tJi a yaag~a xaai ~ + t yxa b~ay~a a~ax~ q- t jx a ylJajl~a a~axa .

Automated solution of second quantization equations 37

There are some similarities between this choice of the cluster operator and
the use of a normal ordered wave operator. The action of the normal ordered
HSOS CCSD wave operator, (er)n.o., and the HSOS PSACCSD wave operator,
e rpSA, on the reference is identical:

(e r) 10) = ErvsA[0). (3.24)

However, this is only true when the wave operators act upon the reference. In
general,

((er))-1 ~ e--TpsA (3.25)

and when the inverse of the wave operator is applied to both sides of the
Schr6dinger equation the theories using the normal ordered wave operator and
the exponential wave operator will differ. The advantage of using the exponential
wave operator is the simplicity of the form of its inverse.

The equations developed using these operators superficially resemble the
closed-shell theory more than the HSOS equations. As with the closed-shell case,
Herr terminates at the fourth commutator and Herr = (He r)con n. However, one
must take care to project out the spin contaminants in the wavefunction by
proper choice of the states that are used to project out the equations for the
cluster coefficients. The simplified projection scheme used in the HSOS CISD
and CCSD methods will produce a spin contaminated wavefunction if used in
the HSOS PSACCSD method. Instead, states constructed from products of
unitary group generators should be used.

4. Applications of open-shell coupled cluster theory

The techniques discussed in Sect. 2 have been applied to the open-shell coupled
cluster theories presented in Sect. 3 as well as the method of Rittby and Bartlett
[28] to produce pilot programs that can be used to evaluate the relative potential
of these methods. The size of the chemical systems and the basis sets employed
are limited to be fairly small, so emphasis will not be placed on comparisons to
experiment. Rather, the new methods will be compared to the CISD and the full
CI methods.

4.1. The single-triplet splitting in methylene

The energies for the 3B 1 and 1A 1 s t a t e s of methylene are reported in Table 6. The
configuration interaction with all singles and doubles (CISD), CISD with the
Davidson correction (CISD + Dav.), and the full CI results were obtained by
Bauschlicher and Taylor [44]. Their CISD calculations did not restrict excita-
tions to the interacting space [45, 46]. This has no effect on the 1A 1 energy;
however, the 3B 1 energy computed in this way yields an energy which is lower
than the energy computed with an interacting space CISD. The biggest error in
the energy is in the treatment of the ~A1 state, because it is better described with
a two reference starting function. Thus, the CISD results fall above the 1.~41
energy more than CISD will fall above the aB~ energy and AEIAI_aBI will be too
large. Not restricting the 3BI CISD excitations to the first order interacting space
will slightly aggravate the problem. Also shown in the table are the results with
the 3B 1 CISD excitations restricted to the interacting space, CISD(int. space) and

38 C.L. Janssen and H. F. Schaefer III

Table 6. The singlet-triplet splitting of methylene, predicted by theoretical methods described in the
text. When different methods are used for the singlet and triplet wavefunctions, the notation 3B 1

method/]Al method is used

Method E3B, (a.u.) E1A, (a.u.) AE (kcal/mol) Error

SCF -38.927947 -38.886297 26.14 14.17
CISD -38.041602 -38.018284 14.63 2.66
CISD +Dav. - 39.046910 - 39.027222 12.35 0.38
CISD(int. space) -39.041199 -39.018284 14.38 2.41
CISD(int. space) +Dav. -39 .046408 -39.027222 12.04 0.07
UCEPA -39.047715 -39.028718 11.92 -0.05
PCCSD/CCSD(4c) -39.044076 -39.023639 12.82 0.85
PSACCSD(4c)/CCSD(4c) -39 .043799 -39.023639 12.65 0.68
HSOS CCSD(lc)/CCSD(lc) -39.046476 -39.030131 10.26 -1.71
HSOS CCSD(2c)/CCSD(2c) -39.044028 -39.023639 12.79 0.82
HSOS CCSD(3c)/CCSD(4c) -39.044026 -39.023639 12.79 0.82
full CI - 39.046260 - 39.027183 11.97 0

CISD(int. s p a c e) + Dav. These show an improvement of AE~AI_3AI relative to
the full CI result by 0.3 kcal/mol. In fact, the CISD(int. space) + Day. AEtA,_3B1
misses the full CI result by only 0.07 kcal/mol. The CISD + Day. method
frequently gives very good results for small systems, but this method's serendip-
ity will run out as the systems get larger, since CISD + Day. suffers from CISD's
lack of size extensivity.

In all of these CISD calculations only single reference treatments of the 1A 1
state have been considered. This is because, although a multireference coupled
cluster method which is capable of correctly describing the ~A1 state has already
been presented by Paldus et al. [20], we have not yet implemented such a method
to compare with the other two reference methods. However, one result is
included which uses two references to describe the ~A1 state of methylene and
this is the unitary coupled electron pair approximation (UCEPA) method of
Hoffmann and Simons [27]. They used a spin-adapted method which produces
equations that are linear in an anti-Hermitian cluster operator and which reduces
to linearized coupled cluster theory when the reference used is a one configura-
tion closed-shell state. As is commonly the case with linearized CC methods the
energies are slightly below the full CI energies. The references these authors
employed for their singlet triplet methylene splitting calculations were a single
configuration state function (CSF), la22a~ lb223a1 lb l , for the 3B 1 state and the

2 2 2 2 two CSF state c~ la12a I lb: 3al + c: la22a 2 lb 2 lb~, for the ~A1 state. It has long
been known [47] that a one configuration function for the triplet and a two
configuration function for the singlet are needed to give a balanced description
of the wavefunctions so that AEIa1_3B] can be accurately computed without
excitations higher than singles and doubles in the wavefunction. The UCEPA
method of Hoffmann and Simons gives a quite good AE,AI_3B~.

The acronyms for the single reference coupled cluster methods shown in
Table 6 are augmented with a parenthetical suffix giving the maximum number
of commutators used to obtain the equations for the energy and wavefunction.
Thus, CCSD(lc) has only the first commutator implemented and is equivalent to
L-CCSD. Starting with the method using HSOS CCSD(lc) for the 3B~ state we

Automated solution of second quantization equations 39

find that the triplet energy is very close to the full CI energy, but if we use the
CCSD(le) method on the ~A~ state to obtain AE~AI_3sl then the result is quite
poor. This is because the single reference CCSD(lc) method does a very poor job
of describing the inherently two configuration 1A 1 state and obtains an energy well
below that of the full CI result. However, after we add terms quadratic in T to
compute the energy of the ~A1 state with CCSD(2¢) then the method produces a
more reasonable answer and this time gives an answer which is above the full CI
answer. Going from CCSD(2c) to CCSD(4c) (=-the full CCSD model for a
closed-shell reference function) does not change the result by even a/ tHartree. To
obtain AEI a ~_3s~ using the CCSD wavefunctions more commutators must be used
in the HSOS CCSD method as well. The HSOS CCSD(2c) method provides an
energy above the full CI energy and adding the third commutator has a negligible
effect on the energy. If HSOS CCSD(8c) (=-the full HSOS CCSD method) were
currently available, no change in the result would be expected. The splitting
AE~A ~_3B~ at the HSOS CCSD(3c)/CCSD(4c) level is quite good compared to the
CISD(int. space) results; however, it is clear that a multireference description of
the singlet is needed to fully treat this problem with methods based on only single
and double excitations.

The PSACCSD method is also compared to CCSD in Table 6. The
AE~A ~_3B~ is better but this is because PSACCSD overestimates the energy of the
triplet state, although the degree of overestimation is quite small. Also provided
are results using the PCCSD method of Rittby and Bartlett [28], which produces
answers that are very similar to the HSOS CCSD(3c) results.

4.2. The 2B 1 and 2A 1 NHz potential energy surfaces

The 2B 1 and 2A1 states of NH 2 were studied with the open-shell CCSD methods
for the equilibrium nuclear geometry as well as geometries where the N - H bond
distances have been stretched. Specifically, the geometries employed are req (=-the
equilibrium geometry), 1.5reo, 2req, and a structure that is essentially dissociated
into N atom and H2. The ~B~ NH 2 results for the open-shell coupled cluster
methods are listed in Table 7. All use DZ basis sets and exclude excitations from
the lowest lying molecular orbital, the ls-like orbital on nitrogen. What this table
shows are the differences between the open-shell coupled cluster methods and the
full CI energies which were obtained by Bauschlicher et al. [48], as well as the SCF,
CISD, and CISD + D a v . differences, which were obtained by Bauschlicher et al.
Their CISD excitations were restricted to the interacting space.

Table 7. Total energies (a.u.) relative to full CI for the 2B 1 state of N H 2

Method AEr~ dEl.sr~ AE2r~ N + H 2

SCF 0.102203 0.161029 0.264315 0.089605
CISD 0.004609 0.016439 0.055109 0.006215
CISD ÷Dav. 0.000447 - 0.000890 - 0.004487 0.000758
PCCSD 0.001272 0.004273 0.000134 0.002720
PSACCSD(4c) 0.001340 0.004566 0.001059 0.002756
HSOS CCSD(lc) 0.000281 -0.007639 diverged -0.011179
HSOS CCSD(2c) 0.001342 0.004448 diverged 0.002774
HSOS CCSD(3c) 0.001341 0.004487 0.006936 0.002773

40 c.L. Janssen and H. F. Schaefer III

Several insights may be gained from such a comparison besides the devia-
tions from the full CI results. The SCF wavefunction becomes a very poor
description as the N - H distances are increased; thus this comparison tests the
ability of the methods to make up for the deficiencies of a single reference. Also,
it is usually more important to obtain correct relative energies, as opposed to
absolute energies. If a constant error relative t o the full CI is consistently
obtained with the method, then for all practical purposes it works as well as full
CI for that case.

Examining Table 7 we see the difficulty that SCF has in describing the 2B~
state of NHz as the N - H bond distances are increased. The CISD method
considerably corrects for this deficiency, but its error is still too large. As is
frequently the case for small systems, CISD + D a v . significantly improves upon
the CISD energy, giving both smaller and more uniform errors than CISD.
However, the CISD + D a v . error drops by 0.0036 Hartree going from 1.5req to
2req. A similar drop is observed for the PCCSD and PSACCSD methods,
although the drop is larger for the PCCSD method. These methods also show a
roughly 0.003 Hartree increase going from req to 1.5req , which was not observed
for the CISD + Dav. method. However, both the PCCSD and PSACCSD
methods greatly improve upon the CISD result. The PCCSD results are slightly
better than the PSACCSD results using absolute differences from the full CI
answers as the yardstick. The HSOS CCSD(3c) results are very close to the
PSACCSD results for all but the 2req result, where it is farther from the full CI
result than the PSACCSD result. Despite this, it may be stated that the HSOS
CCSD(3c) answer is better, because it shows a more uniform deviation from the
full CI result; but due to difficulties in converging the HSOS CCSD(2c) result, it
cannot be said that the HSOS CCSD method is converged with respect to the
number of commutators for the 2req energy point.

A similar analysis can be performed on the 2A 1 NH2 results which are
displayed in Table 8. These results are similar to the 2B 1 NH2 results except for
the structure at 2req, where HSOS CCSD(3c) results resemble those for the
PCCSD and PSACCSD methods more closely. This does not seem to indicate a
change in the behavior for the HSOS CCSD method since its behavior parallels
the behavior seen in the 2B 1 NH 2 case. However, the PCCSD and PSACCSD
methods now exhibit a different trend, instead of giving a drop in energy relative
to the full CI energy as the bond lengths increase, the energies now continue
increasing as the bond is stretched. This could be interpreted as meaning that the
HSOS CCSD is more uniform or stable with respect to changes in the electronic
system. In other words, when HSOS CCSD is inappropriate for describing an
electronic wavefunction, we have a better chance of predicting in what way the

Table 8. Total energies (a.u.) relative to full CI for the 2A 1 state o f N H 2

Method AEre AE1.5re~ dE2req N + H 2

SCF 0.097980 0.138296 0.200654 0.097165
CISD 0.004336 0.012032 0.032600 0.013125
CISD +Dav. 0.000616 0.000893 -0.004761 0.005426
PCCSD 0.001240 0.005042 0.016325 0.007310
PSACCSD(4c) 0.001291 0.005240 0.0 17762 0.007359
HSOS CCSD(lc) 0.000408 -0.000675 diverged diverged
HSOS CCSD(2c) 0.001277 0.005070 0.016231 0.007345
HSOS CCSD(3c) 0.001274 0.005042 0.017186 0.007351

Automated solution of second quantization equations 41

HSOS CCSD result is incorrect. This hypothesis will have to be confirmed by
experience and by including more than three commutators in the equations for
the energy and the cluster coefficients. This need for more commutators can be
seen by noting that this geometry shows the largest change seen so far for HSOS
CCSD in going from two to three commutators. For cases where the SCF
reference forms a good first approximation only two commutators are necessary;
however, as the SCF description becomes poorer more commutators must be
added to get equations with good convergence properties and to obtain an
answer that will not change as still more commutators are added.

5. Conclusion

A method for deriving and implementing equations expressed in the second
quantization formalism has been developed. This has made possible the rapid
development of spin-adapted high-spin open-shell coupled cluster theories and
application of these new methods to simple molecular systems. However, the
techniques used to produce these results have been kept general. Thus, coupled
cluster methods using different reference states can be much more rapidly
implemented than would otherwise be possible. Work is planned for implement-
ing a spin-adapted coupled cluster method which starts with an open-shell singlet
reference, for example; but the technique is not limited to single reference
wavefunctions. The n dependence, where n is the number of electrons, of the
processor time requirement and the memory requirement have been reduced to
their minimum values in the current implementation. Future implementations
need to reduce the polynomial coefficients, which give the memory and processor
requirements in terms of powers of n. However, once the SQSYM compiler is
able to generate efficient code, then all of the methods that SQSYM has been
used to investigate will benefit from this work. Thus, although a general
optimization scheme is more complex and time consuming to develop than is the
optimization of a single program, an overall savings in development time will be
realized for a general compiler capable of optimizing any expression which might
arise in electronic structure theory.

All of the high-spin open-shell coupled cluster methods, HSOS CCSD,
PSACCSD, and PCCSD, investigated show a significant improvement over the
CISD method, even for the small systems investigated here. Which of these
methods will become the technique of choice depends upon several factors,
including computational efficiency of the energy program, efficiency of the energy
gradient with respect to nuclear displacements, and possibly the ease of comput-
ing second derivatives of the energy. Ultimately, the PSACCSD and HSOS
CCSD methods should use less processor time and memory than the PCCSD
method and will probably become competitive with the GUGACI processor
requirements. At that time open-shell coupled cluster methods will be as success-
ful in displacing other methods for the description of electron correlation, as has
been the case for the closed-shell coupled cluster method.
Acknowledgements. This research was supported by the U.S. National Science Foundation, Grant
CHE-8718469. We thank Prof. Gustavo E. Scuseria for helpful discussions.

References

1. Feynman RP (1949) Phys Rev 76:749
2. Goldstone J (1957) Proc Roy Soc (London) A 239:267

42 C.L. Janssen and H. F. Schaefer Ill

3. Hugenholtz NM (1957) Physica 23:481
4. (2i~ek J (1969) On the use of the cluster expansion and the technique of diagrams in calculations

of correlation effects in atoms and molecules, Advances in Chemical Physics 14:35
5. Roothaan CCJ (1951) Rev Mod Phys 23:69
6. Hill TL (1986) An introduction to statistical thermodynamics. Dover, Mineola, N.Y.
7. Coester F, Kiimmel H (1960) Nuclear Physics 17:477
8. Sinano~lu O (1962) J Chem Phys 36:706
9. Thouless DJ (1960) Nuclear Physics 21:225

10. Scuseria GE, Scheiner AC, Lee TJ, Rice JE, Schaefer HF (1987) J Chem Phys 86:2881
11. Besler BH, Scuseria GE, Scheiner AC, Schaefer HF (1988) J Chem Phys 89:360
12. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479
13. Bartlett RJ (1989) J Phys Chem 93:1697
14. Mukherjee D, Pal S (1989) Use of cluster expansion methods in the open-shell correlation

problem. Advances in Quantum Chemistry 20:291
15. Chaudhuri R, Sinha D, Mukherjee D, On the extensivity of the roots of effective Hamiltonians

in many-body formalisms employing incomplete model space (preprint)
16. Jeziorski B, Monkhorst HJ (1981) Phys Rev A 24:1668
17. Laidig WD, Bartlett RJ (1984) Chem Phys Lett 104:424
18. Laidig WD, Saxe P, Bartlett RJ (1987) J Chem Phys 86:887
19. Jeziorski B, Paldus J (1988) J Chem Phys 88:5673
20. Paldus J, Pylypow L, Jeziorski B (1988) in: Kaldor U, (ed) Many-body methods in quantum

chemistry, Lecture Notes in Chemistry 52:151. Springer-Verlag, New York Heidelberg Berlin
21. Meissner L, Jankowski K, Wasilewski J (1988) Intern J Quantum Chem 34:535
22. Meissner L, Kucharski SA, Bartlett RJ (1989) J Chem Phys 91:6187
23. Meissner L, Bartlett RJ (1990) J Chem Phys 92:561
24. Banerjee A, Simons J (1981) Intern J Quantum Chem 19:207
25. Baker H, Robb MA (1983) Mol Phys 50:1077
26. Hoffmann MR, Simons J (1988) J Chem Phys 88:993
27. Hoffmann MR, Simons J (1989) J Chem Phys 90:3671
28. Rittby M, Bartlett RJ (1988) J Phys Chem 92:3033
29. Nakatsuji H, Hirao K (1978) J Chem Phys 68:2053
30. Nakatsuji H (1979) Chem Phys Lett 67:329
31. Hirao K, Nakatsuji H (1981) Chem Phys Lett 79:292
32. Jgrgensen P, Simons J (1981) Second quantization-based methods in quantum chemistry,

Academic Press, New York
33. Szabo A, Ostlund N (1982) Modern quantum chemistry: Introduction to advanced electronic

structure theory. Macmillan, New York
34. Wick GC (1950) Plays Rev 80:268
35. Wolfram S (1988) Mathematica. Addison-Wesley, New York
36. Knowles PJ, Handy NC (1988) J Chem Phys 88:6991
37. Wilensky R (1984) LISPcraft. Norten & Company, New York
38. Kernighan BW, Ritchie DM (1988) The C programming language. Prentice Hall, Englewood

Cliffs, New Jersey
39. International Business Machines (1988) Parallel Fortran language and library reference, Part

Number SC23-0431-0
40. Cole SJ, Purvis GD (1986) Intern J Quantum Chem Symp 20:665
41. Borodin A, Munro I (1975) The computational complexity of algebraic and numeric problems,

45-47. American Elsevier, New York
42. Saxe P, Fox DJ, Schaefer HF, Handy NC (1982) J Chem Phys 77:5584
43. Scuseria GE (1989) (private communication)
44. Bauschlicher CW Jr., Taylor PR (1986) J Chem Phys 85:6510
45. Bunge A (1970) J Chem Phys 53:20
46. McLean AD, Liu B (1973) J Chem Phys 58:1066
47. Bender CF, Schaefer HF, Franceschetti DR, Allen LC (1972) J Am Chem Soc 94:6888
48. Bauschlicher CW Jr., Langhoff SR, Taylor PR, Handy NC, Knowles PJ (1986) J Chem Phys

85:1469

