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Summary. Theoretical methods in chemistry frequently involve the tedious solu- 
tion of complex algebraic equations. Then the solutions, sometimes still quite 
complex, are usually hand-coded by a programmer into an efficient computer 
language. During this procedure it is all too easy to make an error which will go 
undetected. A better approach would be to introduce the computer at an even 
earlier stage in the development of the theory by programming it to first solve 
the set of equations and then compile the solution into an efficient computer 
language. In this research a program has been written in the C programming 
language which can efficiently compute the quasivacuum expectation Value of a 
product of creation and annihilation operators and scalar arrays. The terms in 
the resulting expressions are then transformed into a canonical form so that all 
equivalent terms can be combined. Finally, the equations are compiled into a 
simple representation which can be rapidly interpreted by a Fortran program. 
This symbol manipulator has been applied to open-shell coupled cluster theory. 
Two coupled cluster methods using high-spin open-shell references are presented. 
In one of these methods, the cluster operator contains the unitary group 
generators, and products thereof, which generate all single and double excita- 
tions with respect to the reference. The other uses a simplified cluster operator 
which generates equations that must be spin-projected. These methods are 
compared to other descriptions of electron correlation for the CH2 singlet-triplet 
splitting and the NH 2 potential energy surface. 

Key words: Second quantization equa t ions-  Coupled cluster approach-  Elec- 
tronic structure - Schr6dinger equation - C programming language 

1. Introduction 

Theoretical methods in physical science frequently involve the tedious solution of 
complex algebraic equations. To aid researchers in deriving such equations, 
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elaborate methods have been devised in which the equations can be represented 
as diagrams [1-4]. These diagrammatic approaches are very powerful and 
greatly reduce the amount of labor needed to obtain the necessary equations. 
However much these techniques reduce the researcher's chore, the complexity of 
the equations which can be derived remains constrained by a human's ability to 
manipulate the equations, whether by diagrammatic or any other means. 

This constraint would not pose any problem if human imagination was so 
limited that the only theoretical approaches to the description of nature which 
could be conceived had a simple solution. Fortunately, this is not the case. 
Unfortunately, very complex equations can be generated by even conceptually 
simple physical theories. 

Similarly, even after a simple set of equations has been obtained, their 
evaluation can be very difficult if done by hand. To be more concrete, the 
self-consistent eigenvalue problem which arises in Hartree-Fock theory for 
molecular orbitals composed of a linear combination of atomic orbitals [5] can 
be easily written on a few pages of paper, but only the simplest physical systems 
can be studied without the use of an electronic computer. With the advent of 
these machines the use of Hartree-Fock theory and corrections thereof to the 
study of chemical problems became a field in itself. There is no reason that the 
same computers which have been found to be essential in the evaluation of the 
equations resulting from physical theories cannot be used to derive the equations 
pertinent to unexplored theories as well. 

In the present work, we are concerned with electronic structure in chemical 
systems. More specifically, we are investigating the solution of the time indepen- 
dent Schrrdinger equation for electrons moving in a nuclear Coulomb field 
where the Born-Oppenheimer approximation is invoked and, hence, the nuclei 
are considered to be stationary. The expansion of the wavefunction in terms of 
one particle functions has been extensively used and is in excellent starting point 
for a theory describing electron correlation. This starting point allows the second 
quantization formalism to be used as a convenient method for describing the 
behavior of electrons in terms of the one particle functions. It is the basis for 
many algebraic and diagrammatic approaches to electron correlation. We have 
developed a computer program for deriving equations which can be expressed in 
this formalism. The program allows algebraically complex expressions to be 
derived and writes these equations in the simplest possible final form. This 
program, referred to as the second quantization symbol manipulator, SQSYM, 
will be described in detail in Sect. 2. 

The ability to obtain solutions to theories which suffer a very complex 
algebraic structure would be of little use if we could not apply the solutions to 
specific chemical systems. That is, it is essential that the solutions be expressed in 
some computer programming language, such as Fortran. If SQSYM accom- 
plishes its stated goal, then it will be able to produce equations which are too 
complex for a human to code in a programming language. So, yet again, one 
turns to the electronic computer, but, this time, for an automated compilation of 
the equations into a high-level programming language. This is implemented as an 
extension to SQSYM and is also detailed in Sect. 2. 

The automated solution and compilation of physical theories was never a 
goal in itself. Our principal interest has always been electronic structure theory. 
We found the range of theories which could be investigated limited by the time 
consuming process of doing tedious algebraic or diagrammatic manipulations. 
The area we found most interesting, open-shell coupled cluster theory, was so 
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algebraically complex that the project seemed hopeless if one had to do the 
derivations by hand. Thus, SQSYM was born. We found it necessary to discuss 
the details of SQSYM in the present work, since its development became a 
research project in its own right, but the essence of the research is found in the 
final sections. There are described the versions of open-shell coupled cluster 
theory for which SQSYM was used to transform from a concept into a method 
which could produce physical observables for general chemical systems. 

Before the open-shell coupled cluster theories are discussed, motivation for 
pursuing these algebraically complex methods should be provided. The basic 
notion of coupled cluster theory is that the wavefunction of a many body system 
can be well represented in terms of only few body interactions. This idea also 
appears in the virial expansion for an imperfect gas, where the virial coefficients 
can be broken down into one, two, three, etc. body contributions. For dilute 
gases, the one and two body contributions provide a good approximation to the 
virial expansion [6]. Moving to the quantum mechanical regime, the method of 
self-consistent fields is usually the starting point for the problem of many 
interacting particles. This method reduces the many body problem to several one 
body problems. In the coupled cluster approach [4, 7] the self-consistent field 
wavefunction is improved upon by writing the exact wavefunction as 

=er~, 

T -- r l  q-/'2 q- T3 -.i- • • • , 

where ~ is the exact wavefunction, 4i is the self-consistent field wavefunction, /'1 
represents one particle excitations, /'2 represents two particle excitations, and so 
on. The operator T is frequently called the cluster operator and e r is referred to 
as the wave operator. Letting N be the number of particles, this expansion is 
exact if all T~ up to TN are included. To reduce the complexity of the equations 
a common approximation is to let T = T1 + / '2 .  This approximation is exact for 
two particles and even exact for certain many particle systems. For example, if 
we have N/2 noninteracting systems, each with two electrons, and labeled 
A, B, C, etc., then 

~AB--- = e rA~Ae rB~ B • • • 

=eTA+TB+"'~AB .... 

Thus, for this N body system, T = T 1 + / ' 2  generates the exact wavefunction. The 
question is how will this theory perform when these two body systems are 
allowed to interact. 

I f  we look back to the example of the dilute imperfect gas for an indication 
of the quality that can be expected by including up to only two body interactions 
in our many electron theory, we might expect that it will fare quite well. But a 
fundamental difference between the electronic many body problem and the 
imperfect gas is that while a dilute gas would have almost exclusively two body 
collisions, a given electron in a molecule will feel the repulsion of many other 
electrons simultaneously. That is, the Coulomb force acts over a much longer 
range than the interactions between gas molecules, relative to the mean distance 
between particles. Despite this, the self-consistent field (SCF) approximation 
turns out to be a fairly good description of molecules because the Coulomb force 
felt by an electron can be replaced to a large extent by the average force due to 
all other electrons. The short range of the fluctuation potential in atomic systems 
[8] demonstrates this and the many body terms can be sensibly approximated by 
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products of independent few body terms, given that an SCF wavefunction is used 
as the starting point. 

However, even the SCF wavefunction can be expressed as the exponential of 
one body operators by using Thouless's theorem [9], • = eriE, where E is an 
antisymmetrized product of atomic orbitals. This fact explains the success of 
coupled cluster methods which set ~ = e r2~. This coupled cluster doubles (CCD) 
wavefunction contains, for instance, quadruple excitations of electrons, but the 
coefficients of these states are approximated as the products of the coefficients of 
doubly excited states. The advantage of representing the quadruple excitations in 
this way is that the number of unknowns which must be determined for this theory 
is much smaller than the number needed to exactly represent all the coefficients 
of all excited states. So from an intuitive viewpoint the coupled cluster approach 
seems very appealing. However, the ultimate test is how well experimental results 
can be reproduced, or, better yet, predicted. There is a growing body of evidence 
[ 10-13] suggesting that coupled cluster theory, at least for closed-shell systems, 
is a better approximation than methods of similar computational complexity, for 
example the configuration interaction (CI) approach. 

However, for open-shell systems the problem is not yet completely solved, 
despite the fact that a great deal of work has been invested into the problem of 
generalizing the reference state [14], Most of this effort has been directed towards 
the development of multireference coupled cluster theories. Instead of using a 
single Slater determinant as a reference function, these methods utilize wave 
operators which act upon a reference function formed from a linear combination 
of Slater determinants. The space of determinants which is used to form the 
reference is known as the model space. The selection of model space is used to 
classify the orbitals. Typically the orbitals occupied in all model functions are 
referred to as holes, those which are occupied in some model functions are valence 
orbitals, and orbitals which are occupied in no model space functions are particle 
orbitals. The number of electrons in the valence orbitals will be called Nv. 
Commonly used model spaces are the complete and quasicomplete model space. 
The complete model space contains the functions corresponding to all possible 
occupations of the valence orbitals with Nv electrons. The quasicomplete model 
space further partitions the valence orbitals into subgroups. The number of 
electrons in each of these subgroups is fixed, and all functions which have the 
appropriate number of electrons in each subgroup are included in this model 
space. It would be most desirable to have a method which can work with a general 
incomplete model space, but we must consider how the selection of the model 
space affects the connectedness of the expressions for the effective Hamiltonian 
and the size-extensivity of the effective Hamiltonian's roots. While it is now fairly 
well understood that size extensive energies may be obtained for the compelte 
model space, some questions still remain about more general model spaces [ 15]. 
The multireference formalisms tend to be considerably more complex than their 
single reference counterparts. Moreover, the methods are computationally expen- 
sive and in some cases near singularities arise in the equations to be solved. 

One group of multireference coupled cluster methods is based on the technique 
of Jeziorski and Monkhorst [16]. In 1981 Jeziorski and Monkhorst proposed a 
multireference coupled cluster method in which the exact wavefunction is ex- 
pressed as a linear combination of cluster expansions: 

~v r e r .~  
vv/a - - , u ,  

/.t 
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where the linearly independent set of n functions, ~u, form the model space and 
the cvu are obtained by the diagonalization of an effective Hamiltonian which has 
dimension n to yield roots, 7tv, 1 ~< v ~< n. The connectedness of this approach for 
the complete model space was demonstrated by Jeziorski and Monkhorst. Laidig 
and Bartlett [17] implemented a simplified version of this method in 1984. Their 
method included only terms linear in the cluster operator and was restricted to 
the ground state of the system of interest. Laidig et al. [ 18] went on to use a 
spin-adapted formalism in 1987. This approach uses the graphical unitary group 
approach to generate the requisite matrix elements. The method of Jeziorski and 
Monkhorst was also implemented by Jeziorski and Paldus [19] in 1988. In this 
case the only approximation was the restriction to single and double excitations 
in the cluster operator and the exclusion of terms which were nonlinear in the 
cluster operator. These authors used a spin-adapted formalism and restricted the 
model space to the specific but important case of a complete space in two 
orbitals of different symmetry. For this choice of model space there are two 
model functions both of which are closed-shell wavefunctions. The restriction to 
linear terms was upgraded to a restriction to quadratic terms by Paldus et al. 
[20]. They found that, like in the single reference linearized coupled cluster case, 
the quadratic terms help eliminate the singularities that can arise in the linearized 
theories. Another implementation of the Jeziorski and Monkhorst method was 
accomplished by Meissner et al. [21] in 1988. They restricted the cluster operator 
to two particle excitations only, but fully treated the nonlinear terms. The model 
space had to be of the complete variety, but in 1989 Meissner et al. [22] extended 
the method to include special classes of incomplete model spaces while still 
achieving size extensive expressions for the energy and Meissner and Bartlett [23] 
went on to develop an approach for general incomplete model spaces in 1990. 

Spin adaptation of multireference coupled cluster theory is rather straight- 
forward for linearized methods, but is quite difficult when nonlinear products of 
the cluster operator are kept. The only example of a spin-adapted multireference 
coupled cluster theory that retains nonlinear terms discussed thus far is that of 
Paldus et al. [20]. Banerjee and Simons [24] set out to develop a spin-adapted 
multireference coupled cluster method in 1981. Their cluster operator, T, was 
expressed in terms of the generators of the unitary group: 

EPq = E atpaaqa • 

Unitary group generators are used to ensure that IS 2, T] = 0. With this form for 
T, the operator T and its powers do not introduce spin contamination into the 
wavefunction. The prescription they present involves first obtaining a complete 
active space (CAS) SCF wavefunction, lTt). This wavefunction is to be frozen 
throughout the rest of the procedure. Then, they approximate T as T 1 + T2, 
where 

rl = Z txEa, 
a , x  

T2= Z t~E~E~. 
a <~ b , x , y  

Here and elsewhere labeling conventions will be used to specify the ranges of 
summations. The indices i and j will refer to holes, x and y will label valence 
orbitals, a and b will designate particles, and p, q, r, and s label indices which can 
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take on any value. With this choice of T, Banerjee and Simons were able to 
obtain and apply a theory including in the energy terms up to quadratic in T. 
Baker and Robb [25] implemented a theory similar to this, but used only T =/ '2  
and modified it to be anti-Hermitian. Then they minimized the energy: 

E = (~gl{er2}*Her21P)  = ( P l e - r 2 H e r 2 } ~ ) .  

This energy expansion was truncated to quadratic terms in T. Thus, when the 
energy is minimized with respect to variations in the cluster amplitudes, the 
equations obtained for the amplitudes were linear in T. It should be noted that 
the energy expression which is being minimized is an approximate energy 
expression and thus the computed energy may come out below the full CI 
energy, which is the exact solution within the given basis set. The procedure of 
Banerjee and Simons and that of Baker and Robb suffer severe problems in their 
practicability. The size of the CASSCF expansion grows exponentially with the 
number of valence orbitals for a given number of electrons. Since this greatly 
limits the size of the valence space, it is desirable to include core electron 
correlations through the cluster operator. However, the above methods do not 
possess this ability. In 1988, Hoffmann and Simons [26] resolved this problem 
with their unitary coupled cluster (UCC) method. An anti-Hermitian cluster 
operator was used to obtain a unitary wave operator and the resulting energy 
expression was truncated at quadratic terms in T and minimized with respect to 
variations in T. All single and double excitations were included in their cluster 
operator. This method is computationaUy expensive; however, Hoffmann and 
Simons went on to present [27] a related, but computationaUy efficient formal- 
ism, UCEPA, one year later. 

Another important group of multireference methods, whose overview shall 
be left to Mukherjee and Pal [14], is formulated around a single wave operator 

which generates not only the ~(Uv~, but also the ionized system wavefunctions 
7t(~ n~, where 0 ~< n < Nv. This introduces a surplus of unknowns and equations if 
one is interested in only unionized states of a chemical system, as is frequently 
the case. These methods receive strong support because they transparently 
remove linear dependencies between the cluster amplitudes and also because it is 
better understood that the energies produced by these methods are size extensive 
for incomplete model spaces. 

Despite the progress in the multireference coupled cluster methods, the 
investigation of single reference techniques for open-shell systems has not yet 
been exhausted. The role which these methods would fill is the efficient and 
accurate prediction of properties for open-shell systems which are dominated by 
one reference. The reference could be either a single Slater determinant or a 
simple linear combination of determinants where the coefficient of each determi- 
nant is constrained by the desire to obtain a proper eigenfunction of S a. The 
coupled duster formalisms based on unrestricted spin orbitals can already be 
used to treat the high-spin open-shell case, where the number of 0~ spin occupied 
orbitals is greater than the number of/~ spin occupied orbitals. This method 
suffers from a spin contaminated wavefunction and energy; that is, the wavefunc- 
tion is not an eigenfunction of the S 2 operator and contributions from the 
contaminants appear in the energy expression. These methods also require that 
more unknowns are present than are actually required to solve the problem. 
Rittby and Bartlett [28] pointed out that if an unrestricted Hartree-Fock (UHF) 
reference is discarded in favor of a restricted Hartree-Fock (RHF) reference, 
then, even in a spin orbital (as opposed to spin eigenfunction) formulation, some 
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relief to these difficulties can be found. In this case, spin contaminated contribu- 
tions to the energy disappear, while the wavefunction itself retains contributions 
of the wrong spin symmetry. They refer to this method as projected coupled 
cluster (PCC). Projected coupled cluster still requires determining more un- 
knowns than should be necessary. 

Although differing somewhat from the traditional coupled cluster theories, 
Nakatsuji and Hirao suggest a method [29, 30] for the closed-shell reference and 
high-spin open-shell reference case, which has been designated symmetry adapted 
cluster (SAC) theory, where the cluster operator generates only those excitations 
from the reference which are of the appropriate spin symmetry. Nakatsuji and 
Hirao truncated their cluster operator to only single excitations in all of the 
systems with open-shell references that they studied using this method, although 
some of these did not interact with the reference through one body operators. 
This cluster operator does not necessarily generate spin eigenfunctions when it 
operates on functions other than the reference; thus, the wave operator generates 
a wavefunction which is not an eigenfunction of spin. They chose to deal with 
this by projecting out the spin contaminants. All of these contaminants come 
from the terms which are nonlinear in the cluster operator. Hirao and Nakatsuji 
treated higher excitations from an open-shell reference with another method [31], 
where open-shell singlet and triplet wavefunctions were obtained by starting with 
the reference determinant 

where ~bi are the spatial orbitals obtained from a RHF procedure. The cluster 
operator was chosen to include all interacting single and double excitations from 
the reference. To obtain an expression for the energy or equations for the cluster 
coefficients the heavily spin contaminated wavefunction ~ = e T~ is operated 
upon by a singlet or triplet spin projector to remove the undesired components. 
A method for describing open-shell singlets and triplets without starting from 
such a poor reference would be better. 

In the present work the symbol manipulator, which will be discussed in Sect. 
2, will be used to assist in the development of several coupled cluster methods for 
describing electron correlation in systems that are well approximated by a single 
high-spin open-shell reference determinant. Section 3 will begin by outlining the 
basic approach by applications to a method which is already well understood, 
specifically, configuration interaction. These and all other applications of the 
symbol manipulator will include all single and double excitations which directly 
interact with the reference. Section 3 continues with a spin-adapted open-shell 
coupled cluster method truncated to cubic terms in the cluster operator and then 
ends with an approach which bears resemblances to the SAC method of 
Nakatsuji. Section 4 will present results for a few chemical systems and Sect. 5 
closes with a discussion of the main results. 

2. The automated solution of second quantization equations 

Many theoretical approaches can be described in the second quantization 
formalism. Perturbation theory, configuration interaction, coupled cluster, and 
other methods which use one particle orbitals as their starting point have 
realizations in this formalism. We shall focus our attention on coupled cluster 
with the standard nonrelativistic electronic Hamiltonian. After the form of the 
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reference function, [qQ, and the cluster operator T have been decided upon, all 
that remains is to evaluate the expression 

E~ = (~[e-rHer[~), (2.1) 

using projections upon excited states, IX), to determine the T operator: 

<Xle- rHer[~> = 0. (2.2) 

A second quantization representation of T and H leads to a very straightforward 
solution of the above equations. While the manipulations required to obtain the 
solution do not require much innovation, it does require a great deal of 
error-prone work. This complexity motivated diagrammatic approaches, without 
which, much of the published work in perturbation theory, coupled cluster, 
etc. could not have been done. But for a sufficiently complex choice of T, 
even the diagrammatic methods can become unwieldy and subject to a multiplic- 
ity of human errors. This is the motivation for an automated solution to this 
problem. 

The computer program developed in this research for obtaining the solutions 
to these equations will be called the second quantization symbol manipulator 
(SQSYM). This program understands simple commands which are used to 
describe the operators and then manipulate the expressions. The expressions 
produced can be very complex. In some cases rearranging the expressions in such 
a way that they can be effÉciently executed on a computer, allowing the energy 
actually to be computed for some arbitrary molecule, would be a monumental 
task, perhaps even impossible if the task was left to human hands alone. Thus, 
after the expressions have been obtained and rewritten in their simplest form, 
SQSYM must be able to take the expressions and compile them into a language 
which can be efficiently executed. 

This section is concerned with describing the approach taken by SQSYM to 
solve these problems. First, the second quantization formalism will be reviewed, 
then the language which the SQSYM interpreter understands will be outlined. 
Following this, we will discuss the implementation details for SQSYM. This 
entails such things as the data representation and data manipulation. 

2.1. Second quantization formalism 

The second quantization formalism [32, 33] provides a simple method for 
computing matrix elements of operators between states written as an antisym- 
metrized product of orbitals, each with single occupancy. These states are built 
up from the true vacuum, I), by the particle creation operators, avt : 

14> = 1-I .;1>. (2.3) 
P 

The adjoint of a creation operator is a particle annihilation operator, a v. To 
create properly antisymmetrized wavefunctions the creation and annihilation 
operators must obey the anticommutation relations 

{a;,  aq } = ~p,q, (2.4a) 

{a;, a*q } = 0, (2.4b) 
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and 

{ap, aq } = 0. (2.4c) 

Operators can be expressed as sums of products of creation and annihilation 
operators. The one body operators can be expressed as 

01 = ~ ~-,plollq>a?paq 
p,q 

and two body operators can be written 

(2.5) 

where 

and 

02=½ Z (Pql°2lsr)a~atqaras, (2.6) 
p,q,r,s 

(p[ol Iq) = f drep(r)ol (aq(r) (2.7) 

t" 
(,pqlo2[rs ) = J cO 1 dr2~p(rl)¢q(r2)O2~r(rl)¢s(r2). (2.8) 

For the case of two electron integrals the notation 

(pr [ qs) = (,Pql 1 Irs ) (2.9) 
r12 

is frequently used. The summations in these general operators must run over all 
the basis functions. 

It is inconvenient to have to deal with the product of large numbers of 
creation operators which occur in Eq. (2.3). It is better to redefine the vacuum 
to be some reference function, 

[ 0) = l-[ a t  I), (2.10) 
i 

following which all of the states we must deal with can be expressed in terms of 
the quasivacuum, 10), by applying the desired electron creation and annihilation 
operators. For example, a single excitation from the reference can be written as 
creation of a hole (annihilation of an orbital that is occupied in 10)) followed by 
creation of a particle (creation of an occupied orbital which was previously 
unoccupied in [0)). This state would be written a~a~ [0). 

Now we have all of the tools that are necessary to evaluate matrix elements 
with this formalism. Any matrix element can be written as the quasivacuum 
expectation value of  a product of creation and annihilation operators contracted 
with the appropriate matrix elements. Observing that any given creation or 
annihilation operator, X, will satisfy either X[0) -- 0 or (0IX = 0, we can use Eq. 
(2.4) to commute the creation and annihilation operators around each other 
until they act upon either the quasivacuum or its adjoint to give zero. After all 
of the creation and annihilation operators have been eliminated in this manner 
a strictly scalar expression will remain. This is the desired matrix element. This 
process can be simplified by using Wick's theorem [34], which implicitly 
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performs all of the required commutations for us. Wick's theorem can be 
written 

A B C D  • • • X Y Z  = : A B C D  • • • X Y Z :  

I--7 t I 7 - q  

+ : A B C D  • • • X Y Z :  + : A B C D  • • • X Y Z :  + • • • + : A B C D  • • • X Y Z :  

+ : A B C D  • .  • X Y Z :  + : A B C D  • • • X Y Z :  + • • • + : A B C D  • • • X Y Z :  

° . . 

+ : A B C D  • • • X Y Z :  + : A B C D  • • • X Y Z :  + • • • + : A B C D  • • • X Y Z :  (2.11) 

or  

an operator = the normal ordered operator + all possible normal ordered prod- 
ucts with single contractions + all possible normal ordered products with two 
contractions +-  • • + the fully contracted products, where the normal ordering of 
operators is represented by placing colons on either side of the group of 
operators to be normal ordered. The normal ordering process moves operators 
which annihilate <01 to the left or, equivalently moves operators which annihilate 
10> to the right. This motion is done with the sign modifications specified by the 
anticommutation relations, but the contractions which come from the delta 
functions in the anticommutation relations are ignored. 

To relate an operator to its normal ordered form, the contractions which 
arise in the anticommutation process must be considered and are represented by 
a line drawn between two operators. A contraction generates a Kronecker delta 
between the indices of the operators being contracted. If the operators are in 
different spaces (one operates in the particle space and one operates in the hole 
space) the delta function is zero. Similarly, if the operators do not need to be 
commuted to obtain a normal ordered form, then a contraction between these 
two operators must not appear. Also, if the two operators are of the same type 
(both are creation operators or both are hole operators), then the contracted 
term does not appear. Finally, the sign of each term must be adjusted to reflect 
the number of commutations which had to be performed to get that term. This 
can be simply computed by taking the sign change needed to normal order the 
operators remaining after the contractions have been performed multiplied by 
( - -  1) ner°ssings, where nerossing s is the number of times the contraction fines in Eq. 
(2.11) cross. 

When expectation values with respect to the reference wavefunction are 
computed using Wick's theorem, the only terms to survive are the fully con- 
tracted products. 

Due to the complexity of the above procedure elegant diagrammatic methods 
have been developed to simplify the derivation process. With these methods one 
represents matrix elements and the cluster operator as points on a page. Then, 
one draws rays corresponding to creation and annihilation operators entering or 
leaving these points. The rays between matrix elements and operators are then 
connected in all possible ways to obtain diagrams which are related to the terms 
which the anticommutation relations could give in a slightly more straight- 
forward yet much more tedious manner. 
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The indices of the creation and annihilation operators used so far in this 
section specify spin orbitals. That is, the product of a spatial one electron orbital, 
~bp, and an electron spin function, ~ or ft. In much of what follows we shall 
require that each spatial orbital, ~bp, is used with two spin orbitals, ~bq, and ~bpp. 
This is the starting point for building wavefunctions of the correct electron spin 
symmetry and the use of the same spatial orbital for two spin orbitals is known 
as the restricted Hartree-Fock (RHF) procedure. 

Now it is necessary to associate with each creation and annihilation operator 
two indices, one for the spatial part and one for the spin part. So we have ap,, 
where p refers to the spatial orbital and tr takes on the values ~ or fl and refers 
to the spin. From these operators we can define the particle number and spin 
conserving operators 

EP = Z a~p ¢r aq~, ( 2 . 12 )  
¢r 

which are known as the generators of the unitary group. 
Since the Hamiltonian is both particle number and spin conserving it can be 

expressed in terms of the unitary group generators: 

H = hpqE p + ½ (pq [rs)(gPqE; - (~qrEPs), (2.13) 

where repeated indices imply summations. Similar expressions exist for other 
operators written with the second quantization formalism. 

2.2. The S Q S Y M  interpreter 

SQSYM is an interpreter. That is, it reads input from a file or terminal and 
executes the commands as they are read. This is in contrast to a compiler, where 
the commands to be executed are first translated into another language. Fre- 
quently, this language is the machine's most primitive and efficient language. 
There is always extra overhead associated with interpreting the commands 
instead of running a program that has been compiled into a very efficient 
language. However, for SQSYM, this overhead is very small. The SQSYM 
language is designed to allow much to be done with very few commands. For 
example, there is one command that takes the product of several expressions and 
then computes the expectation value of the resulting expression. The vast 
majority of the time is spent performing this complex task, while very little time 
is needed to determine what command has been requested, where the data are 
located, and what routines must be called. 

SQSYM can also act as a compiler. However, it does not compile its input 
program into a more efficient language like most other compilers. Instead, the 
input is always interpreted with the result of producing data that are internal to 
SQSYM and which represent mathematical expressions. When the compiler 
portion of SQSYM is invoked, these expressions are compiled into a form which 
can be executed. This target language consists of primitive commands that 
perform various operations between one or two arrays. To obtain an energy for 
some molecular system the compiler output must be interpreted by another 
program. 

There are two different routes which could have been followed in implement- 
ing SQSYM. A previously existing symbol manipulator such as Macsyma, 
Reduce, or Mathematica [35] could have been used as a starting point. All of 
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these packages are large and complex; one person could not reproduce all of 
the effort that went into these packages. However, most of the features of these 
commercial programs are not needed for the present purposes. Such things as 
analytic integration are not necessary in SQSYM. Furthermore, each of these 
packages has severe deficiencies with regard to manipulation of second quan- 
tization equations. Although Reduce has been used successfully for simple 
second quantization problems in quantum chemistry [36], much customization 
of Macsyma, Reduce or Mathematica would be required to efficiently derive 
and simplify the large and complex expressions which must be dealt with in the 
present work. Furthermore, they would be useless for the conversion of the 
equations to forms which could be either compiled or efficiently executed. 
Macsyma and Mathematica do have primitive routines which can produce 
Fortran code segments; however, this feature would not be able to produce 
efficient code where multidimensional arrays are concerned. Moreover, the use 
of such commercial products may restrict the number of machines which 
SQSYM could run on. The task at hand is sufficiently computationally inten- 
sive that it demands that the fastest machine available at any given time be 
used to run the application. Thus, the idea of starting from an existing com- 
mercial product had to be abandoned. 

Ruling out commercial symbol manipulation packages as a starting point 
does not complete the choice of implementation, however. Next the language in 
which SQSYM is written must be chosen. Three possibilities were considered, 
Fortran, Lisp [37], and C [38]. For t ran is a widely available and efficient 
language, but, it is not a good choice for large complex programs. The limita- 
tion of six characters on the lengths of symbols such as variable names and 
subroutine names make it difficult to give meaningful names in all cases. 
When hundreds of subroutines and as many variables are being used, the 
ability to assign descriptive names speeds the programming and debugging 
processes. Another problem with Fortran is the limited number of data 
types that are available. Fortran provides for integers, finite precision real 
numbers, characters, and arrays of these data types. It is much more conve- 
nient to be able to define user data types, so that pieces of related data can 
be moved around as one unit. The data types SQSYM uses are somewhat 
complex and discussed in more detail later. Finally, many of the algorithms 
needed are recursive in nature, such as the evaluation of Wick's theorem, and 
not all dialects of Fortran allow recursion. The next language to be discussed, 
Lisp, was actually used in the original implementation of SQSYM. It is 
available on fewer machines than Fortran, but is still fairly common. Lisp 
has traditionally been an interpreted language, but compilers are commercially 
available. Lisp is a good symbol manipulation language, but even when it 
is compiled it runs more slowly than either Fortran or C. User data types 
can be constructed as lists of the built-in data types and Lisp will provide 
for recursion. This is why Lisp was preferred over Fortran. Lisp was chosen 
as the language for the initial implementation for SQSYM, primarily because 
of our lack of knowledge about C. However, the Lisp version of SQSYM 
was too slow and required too much memory. This motivated a rewrite of 
SQSYM using the C language. This language provides the flexible definition 
of user data types, recursion, and portability. The C programming language 
also has compilers available which generate efficient code and has been 
quite successful in allowing rapid implementation of the numerous requisite 
algorithms. 
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At this point we have a compiled program, written in C, which reads a 
terminal device or disk files to obtain commands which are executed as they are 
read. Most of these commands are used to describe the data which is to be 
processed. The first group of commands which must be given are the declara- 
tions. The declare command must be used to associate a label with a type. For 
example the two electron integrals, (/j [kl), are an array of scalar numbers. If we 
wish to have SQSYM associate with them the label "h2", then the command 
"declare scalar h2" would be given to SQSYM. A list of data types and 
descriptions of what they mean is given in Table 1. 

The next piece of information needed is a description of the indices needed 
to specify a spin orbital. This is given by the direct_product command. The 
arguments to direct_product are the names of the spaces for which the direct 
product is being taken. Typically, the only spaces needed here are the spin space 
and the spatial space. Also given with this command is the breakdown of each 
of the spaces into ranges. The spin space can be decomposed into two ranges 
each of dimension one, ~ and t ,  or one range of dimension two. The spatial 
orbital basis can be broken down into a particle and hole space. The dimensions 
of the particle and hole space can be given as undefined allowing the code which 
SQSYM produces to be general. An index for the irreducible representation is 
not needed for SQSYM. Finite, nondegenerate point group symmetry can be 
fully taken into account in another way and this will be explained later. 

After the breakdown of the spin orbital indices is given, the range command 
is used to specify subspaces within a space. Ranges within a space are given with 
a binary notation, a zero in the nth position indicating that subspace n, as 
defined by the direct_product command, is not included in the range and a one 
in this position tells SQSYM to include this subspace in the range. For example, 
let "space_s" be declared as the space of spatial orbitals. The range specified by 
"space_s 10" could be taken to refer to hole orbitals if the quasivacuum has 
been appropriately defined in the manner described below. In this case the range 
"space_s 01" would have to indicate particles. The command "range holes 
space_s 10" would associate with the label "holes" the subspace "space_s 10". 

When the expectation value with respect to the quasivacuum is computed, 
SQSYM must have some idea of what the quasivacuum is. The quasivacuum is 
specified with the vacuum command. The quasivacuum can be given as a direct 
sum of direct products of ranges. A common choice of vacuum is the direct 
product of the particles with the full spin, both ~ and t ,  space. 

Table 1. A list of  the data  types accepted by SQSYM 

Type Description 

scalar 
creation 
annihilation 
external 
internal 
space 
range 
expression 

a factor which is not  an operator 
a creation operator factor 
an annihilation operator factor 
an arbitrary index that  is not  summed over 
an index for which an implicit summat ion  applies 
a basis such as the spatial orbitals or spin functions 
a range specifies a subspace of  a specified space such as particles or holes 
the basic mathematical  quantity which the user manipulates which is a 
representation o f  a sum of  terms 



14 c.L. Janssen and H. F. Schaefer III 

Some of the declared labels require that more information be given than just 
their types. Any label of scalar type requires information about how many 
indices the array has, the permissible ranges of the indices, and the permutation 
symmetries of the indices. All of this information is required if the resulting 
expressions are to be simplified to the greatest extent possible. This information 
is conveyed to SQSYM through the factor command. The arguments to factor 
are the label which has already been declared as a factor, a range for each index 
of the factor, and the permutation symmetries given as products of index 
transpositions together with the sign change that the permutation causes. For the 
two electron integrals, (0' I kl), the factor command would read "factor h2 space 
space space space (+(1 2)) (+(3  4)) (+(1 2)(3 4)) (+(1 3)(2 4)) 
(+(1 2)(1 3)(2 4)) (+(3  4)(1 3)(2 4)) (+(1 2)(3 4)(1 3)(2 4));". This command 
would be issued after the label "h2" is declared as a factor and the label "space" 
is declared as a range. Furthermore, the range command is required to precisely 
specify the range of "space" before this factor command is issued. 

To make it possible to begin constructing expressions, information is needed 
about the indices, which are used for two purposes. The indices declared as 
external represent an unspecified value and those declared as internal always 
occur in pairs and represent a summation over the range which is associated with 
that index. The index command is used to associate a range with indices. 

The last command needed to begin work is assign, which performs requested 
operations on expressions and associates the result with an expression label. The 
operations are described with a Lisp-like syntax which allows recursive reuse of 
operations. For example, the plus function can be given as one of its arguments 
the result of another plus function call. The format of the assign command is 
"assign expression_label expression". When the interpreter reads an expression it 
first checks to see if it has read an expression label. If so, an internal table 
mapping the expression labels to the value of the expression is consulted to 
obtain the expression. If instead, a right parenthesis is read, then the interpreter 
takes the next word read to be the name of an internal function. This function 
is then called and may expect more expressions or other data in its argument list. 
If more expressions are needed, then the routine which reads expressions is 
recursively reentered. 

The functions with are recognized by the SQSYM assign command are 
summarized in Table 2. The most important of these are plus, times, canonicaHze, 
substitute, combine, term, retirees, normalorder, adjoint, delta, switch, and con- 
tract. The most basic of these is term, which allows the user to begin building up 
expressions by giving terms in a symbolic format. Let "x"  and "y"  be declared 
as factors, each of which has two indices, and let "i" be an internal index and 
"u"  and "v" be external indices. Then, the function call "(term + 1 x(u i) y(i v))" 
would produce an expression which is a symbolic representation for the matrix 
multiply between "x"  and "y". The arguments which the term function requires 
is first a constant multiplicative factor, followed by the factors and their indices. 
The internal indices which have been given in the term function must appear 
twice and they are implicitly summed over the range specified for that index with 
the index command. 

Now that the term function has allowed us to enter expressions, we can 
manipulate them with the other functions. The functions plus, times, normal- 
order, and adjoint do exactly as their name implies to their arguments. The other 
principal data manipulation function is retirees. This function takes several 
expressions as arguments. The quasivacuum expectation value is computed for 
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Table 2. The functions recognized by the assign command 
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Function Description 

adjoint 
canonicafize 
combine 
connected 
contract 
delta 
finked_disconnected 
normalorder 
plus 
restore 
substitute 
switch 
term 
times 
unfinked 
vethnes 

vewick 

computes the adjoint of  an expression 
converts each term in an expression to a canonical form 
removes duplicate terms 
returns the terms with connected diagrams 
contracts two external indices in an expression 
simplifies delta functions appearing in an expression 
returns the terms with linked disconnected diagrams 
converts an expression to its normal ordered form 
sums a group of  expressions 
obtains an expression from a disk file 
replaces factors with expressions in an expression 
switches two external indices in an expression 
accepts a symbolic representation of  an expression 
finds the product of  a group of  terms 
returns the terms with unlinked diagrams 
finds the vacuum expectation of  a product of  expressions using Wick's 
theorem 
use Wick's theorem to take a quasivacuum expectation value 

the product of these expressions. When a quasivacuum expectation value is to be 
obtained for a product of expressions, it is not efficient to do the product first 
and then take the expectation value. The problem is that many of the terms in 
the product will give zero contribution to the expectation value. Knowing in 
advance of taking the product that we are going to take the expectation value, 
a large number of the products need not be formed. For example, in open-shell 
spin-adapted coupled cluster theory, the eighth power in T is required for some 
of the equations. Since the T expression has nine terms, computing the product 
would produce 98 =43,046,721 terms. But only two of the nine terms can 
possibly contribute, meaning that only 28= 256 terms in the product can 
contribute to the quasivacuum expectation value. Although it is true that the 
user of SQSYM could avoid such excessive computation without using the 
specialized retirees routine, to have to explicitly take advantage of these savings 
would require long and complex input files, with an increased possibility of error. 

The combine, delta, and canonieafize functions do basic simplifications. The 
first step in the simplification of an expression is canonicalization. This involves 
taking each term in an expression and rearranging its factors to some unique 
order. If the factor's indices can be rearranged using the index permutation 
symmetries that have been given with the factor command, then the indices must 
be rearranged to a unique form as well. Since more than one of a given type of 
factor can occur in a term, the arrangement of indices within a factor can 
influence the ordering of factors within a term. Thus, the index rearrangement 
and term reordering become coupled in a complex way. The canonicalize 
function completely solves this problem; that is, no matter how the factors or 
indices in a term might be permuted, the canonicafize function will put the term 
in the same canonical form. This is important for the combine function, which 
searches through an expression for terms which are identical. If two identical 
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terms are found, then they are replaced with a single term equal to the sum of 
the two original terms. 

The delta function attempts to remove Kronecker delta functions from terms. 
This can usually be done when one of  the delta function's indices is not an 
external index. When both of the delta function's indices are internal and 
identical, the delta function can be replaced by the dimension of  the range over 
which the index sums. This is why the dimensions of  subspaces can be given with 
the direct_product command. If  a dimension was given as undefined and a delta 
function of this sort was encountered, then delta command would leave this delta 
function in the term. Otherwise, the multiplicative factor is adjusted by the 
appropriate amount. 

Some other simplification routines are useful for rearranging the expressions 
to a form that can be conveniently iterated upon when the time comes to apply 
the theory to a chemical system. Occasionally, it is desirable to switch two 
external index labels within an expression. The switch command does this, given 
two external index labels and an expression as arguments. The substitute function 
will search through all of the terms within an expression to find a specified 
factor, which it will replace with a given expression. Finally, the contract 
function allows two external indices to be set equal to each other and summed 
over throughout all the terms in the expression. 

A summary of the commands used to manipulate and simplify data as well 
as some other utility commands is given in Table 3. 

The manipulation and simplification of expressions are not enough. Several 
more simple tasks must still be accomplished. These include commands to print 

Table 3. The commands accepted by the SQSYM interpreter 

Command Description 

) 
adjoints 
assign 
autorestore 

autosave 

cvacuum 
declare 
direct_product 
factor 
file 
fortran 
index 
memory 
print 
range 
relation 

resource 
v a c u u m  

vadvise 
write 

redirect the output of a command to the named logical file 
indicates which operators are adjoints of each other 
associate a label with an expression computed in a Lisp-like language 
indicates that all expressions needed by assign are automatically restored 
from disk 
indicates that all expressions computed with assign are automatically 
saved to disk 
define the complement to the quasivacuum 
associates a label with a type 
specify the spaces used to index the one particle basis functions 
define a factor's indices and permutation symmetries 
associate a logical file name with a filename, 
translates expressions into Fortran 77 
associate indices with ranges 
indicates how much memory SQSYM is using 
display various quantities internal to SQYSM 
associates a label with a subspace 
establish a relationship between a factor and an expression for the 
substitute function 
print out information about SQSYM's resource consumption 
define the quasivacuum 
notify the operating system about the paging requirements 
write a message to the output 
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Table 4. The commands which interface to the compiler portion of SQSYM 
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Command Description 

data _ address 

dataflow 

range_address  

result_address 

associates an index into an address array with a factor provided to 
CORR 
compile an expression in an intermediate representation and translate 
this IR into the CORR language 
gives an index into an address array for the ranges stored in CORR 
associates an index into an address array with a factor computed by 
CORR 

expressions, save and recover expressions and other internal data from disk files, 
and give information about SQSYM's resource consumption. Although these are 
necessary in such a program their implementation is simple and will not be 
discussed any further. A less trivial problem is that of converting the final 
expressions into a computer program which can compute wavefunctions and 
energies for an arbitrarily chosen molecule. This correlation energy program will 
be referred to as the CORR interpreter or CORR. 

Four commands, which have been summarized in Table 4, have been 
introduced into SQSYM to compile the expressions into a program. Three of 
these give SQSYM information about addresses of data that CORR has avail- 
able or desires to be computed. The address is an integer which is interpreted as 
an index into an address array. The address array is used to convert the address 
that SQSYM and CORR have agreed upon to the address where CORR has 
actually stored the data. The address array is needed because the size of the data 
depends on the particular case CORR is running; thus the locations of the data 
can be shifted from calculation to calculation. The address for data that CORR 
initializes at the start of the run, such as the Hamiltonian matrix elements, is 
specified with the data_address command. Addresses for data which are com- 
puted by CORR using the expressions obtained with SQSYM is given with the 
result_address command. Sometimes there is not a direct correspondence be- 
tween SQSYM's factors and CORR's data. The two electron integrals are 
represented by a single label, "h2", in SQSYM, irrespective of the ranges of the 
indices. CORR does not necessarily need all of the two electron integrals, 
however. It may just need the (ai [bj) block of the integrals, that is the particle, 
hole, particle, hole block. This is accounted for in the data_address and 
result_address commands by allowing the range for the indices to be specified 
with the address for the data. The other command giving address information is 
range_address. This tells where the actual dimension of a range can be found 
when CORR is run. This information is necessary for the storage allocation of 
intermediates. The range_address command is also used to tell SQSYM roughly 
how big a range is. This does fix the dimension of each range, but this 
information is only used to compute the optimal algorithm for CORR to employ 
in converting its data into results; the molecules to which the resulting program 
can be applied are not constrained by this specification. 

After all of the needed data and result addresses are given, the compilation 
of the expressions into an executable program can begin. This is done with the 
dataflow command. The first argument to dataflow is a parenthesized list of 
subcommands and their arguments. The first invocation of dataflow requires that 
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the init subcommand be specified to prepare SQSYM's internal static variables. 
The result subcommand can be used in the next execution of dataflow. The 
argument to result must be a label which was given in a result_address com- 
mand. When• the result subcommand is given, an expression must be given as an 
argument to the dataflow command. The address of the result is where the 
evaluated expression is to be accumulated. The external indices in the expression 
correspond to the indices in the factor specified as the argument to result. This 
subcommand causes the information in the expression to be converted into an 
internal format for use with the done subcommand, which takes this internal 
format and converts it into a form which can be executed by the CORR 
interpreter. The information CORR requires is written into two files the names 
of which are specified using the datafile and modeltile subcommands. The datafile 
is a text file listing instructions which the CORR interpreter must follow. These 
instructions are written in the CORR language. The modelfile is another text file 
which contains information about the intermediates CORR will need to use to 
complete a calculation. 

2.3. Data representation 

This section delves into a part of the inner workings of  SQSYM, specifically, the 
data representation. The proper choice of  the underlying data representation is 
very important in a program such as SQSYM. It not only provides the 
framework the program uses to perform the desired work, it also gives the 
programmer a vehicle to conceptualize the problem. A poor  choice would lead to 
a less comprehensible program and unnecessary difficulty in the debugging 
process. Since many of the needs of such a symbol manipulator do not become 
apparent until significant pieces are written, a lack of  foresight in the data 
representation choice could result in rewriting large pieces of the program. The 
data types chosen will be illustrated with C-like program fragments which 
contain structure definitions. The structure is one of  the user defined data types 
provided by C and is all that is needed here. The syntax of  the structure 
definition is fairly straightforward; it is possible to get a basic understanding of 
the data types without understanding much about the C programming language. 
If  more information about C is needed, Kernighan and Ritchie [38] provide a 
short yet complete description. 

The most basic data type describes a range. This is the range_t type and is 
illustrated in Fig. 1. It is built of  two structure members. The first is an integer 
which specifies the space the range applies to, usually either space or spin. The 
actual value of this integer is a number internally assigned by SQSYM to the 
space label at the time the label was declared. In fact, all labels are assigned 
integers at declaration time. These integers provide a compact way to refer to the 

typedef 
struct { 

int space;/* The space which this range occupies. */ 
int sub;/* The subspaces within space which this range covers. */ 
} range_t; 

Fig. 1. The range_t type definition. An index may take on values represented by this structure 
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labels during the manipulations performed by SQSYM. The second structure 
member  in the range_t  type is an integer which gives the subspaces included in 
this range. The subspaces are given as a string of bits. A one indicates that the 
subspace corresponding to that bit position is included and a zero means that 
that  subspace is not included. 

The faetor_t  type, depicted in Fig. 2, is designed to describe a factor as it 
would appear  in a term. The integer members n, t, and id give the number of  
indices, the factor type, and the factor identifier, respectively. The factor type is 
either scalar, creation operator, or annihilation operator in the current imple- 
mentation. Such things as unitary group generators could be added in future 
versions of  SQSYM. The factor identifier distinguishes among the different 
factors of  a given type. For  example, the Hamiltonian and cluster operator are 
both scalar factors, so their t members are identical, but their id fields are 
different and used to distinguish them. In addition to these members describing 
the factor, three arrays are needed to describe the indices. The first array, f, is of  
integer type and gives a pointer to another factor within the term. This index is 
contracted with an index within the factor pointed to by the f array. I f  the 
pointer is invalid, then the index is understood to be external, rather than 
internal. The second array, i, is also of  the integer type. It  contains a pointer to 
the location of the index within the factor pointed to by f with which the current 
index is contracted. I f  f indicates that this factor is external, then i contains the 
integer corresponding to the label of  the external index which belongs here. 
Lastly, an array of  the range_t  type is needed to specify the ranges of  the indices. 
This factor type can now be used to construct a term. 

A term consists of  a product of  factors with summations over pairs of  
indices. The data type which represents terms is te rm_t  and has been shown in 
Fig. 3. The structure members that are needed to describe a term are n, the 
number  of  factors; hum, an integer giving the numerator  of  the constant 
multiplicative factor; den, the integer denominator; and an array of  length 
M A X _ F A C T O R  of structures of  the faetor_t  type. The ordering of  factors is 
important  since some of  the factors can be operators. 

Finally, expressions can be represented by grouping terms together. Since the 
number  of  terms in an expression varies widely, a linked list is much more 
desirable than an array. However, it was feared that increased randomness in 
memory  access and extra overhead in memory allocation and deallocation would 
impair the performance of  SQSYM if a simple linked list were used, so 
expressions were implemented as a linked list of  small arrays of  terms. This data 

typedef 
struct { 

int n; /* The number of indices. */ 
int t;/* The factor type of the factor. */ 
int id;/* The index of the factor in the declaration list. */ 
int i[MAX_INDICES];/* Pointer to contracted index. */ 
inf f[MAX_INDICES]; /* Pointer to the contracted factor. */ 
range_t r[MAX_INDICES];/* The ranges of the indices. */ 
} factor_t; 

Fig. 2. The factor_t type definition. This type of data describes a factor as it would appear in a term. 
The symbol MAX_INDICES is a constant specified at compilation time and limits the number of 
indices which may appear in a factor 
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typedef 
struct { 

int n;/* The number of factors in this term. */ 
int hum;/* The numerator of the constant multiplicative factor. */ 
int den;/* The denominator of the constant multiplicative factor. */ 
factor_t t~MAX FACTORS]; 
} term_t; 

Fig. 3. The term_t type definition. This describes a term according to its constituent factors. The 
MAX_FACTOR symbol is replaced by a constant at compile time. The value of this constant limits 
the number of factors which can appear in a term 

struct expression_struct { 
int n;/* The number of terms. */ 
int protect;/* Do not purge this expression when done if set to not 0. */ 
struct expression_struct *p; /* A pointer to the next block of terms. */ 
term t t[N_TERM]; 
); 

typedef struct expression_struct expression_t; 

Fig. 4. The expression_t type definition. This is a linked list representation of a sum of terms and i: 
the basic quantity which a user of SQSYM manipulates 

type is called the expression_t and is depicted in Fig. 4. The members  o f  this 
structure are an array o f  terms, t, o f  length N _ T E R M ;  the number  o f  terms, n, 
in the array t; and the pointer to the next expression_t in the linked list, p. When  
manipulat ing expressions it is impor tan t  to deallocate memory  for all expressions 
which are no longer to be used. Expressions which do not  correspond to labels 
may  be deallocated as soon as they are used. However,  SQSYM's  assign 
functions do not  know where its expression arguments  came from. Thus,  it is 
necessary to have an additional member  in the expression, the protect member.  
This is one if the expression is to be kept after its use and zero otherwise. When  
an expression is assigned to a label, all the the protect members are set to one, 
until another  expression is assigned to that  label, at which time the old 
expression is deallocated without  regard for the protect member.  This is the only 
time that  the protect member  is ignored. 

Al though this is enough to describe the most  impor tan t  aspects o f  SQSYM, 
we have found this scheme to be very memory  intensive. For  example, when 
combining terms, all o f  the terms within an expression must  be rapidly examined. 
I f  the entire expression cannot  be held in the central memory  o f  the computer ,  
then much time is spent accessing the peripheral paging devices. To  avoid this 
problem the indexed_expression_t  type has been introduced. This type and the 
associated expression_index_t  type are shown in Fig. 5. The indexed_expres- 
s ion_t  is implemented like expression_t with a linked list o f  arrays. In  this case 
the length o f  each array is M A X _ I N D E X E D _ E X P R E S S I O N .  To place a term 
in an indexed_expression_t  we start by assigning every term an index or  hash. 
The procedure used to obtain the index is free to be chosen, but  it should break 
the terms apar t  into several different classes o f  terms and it must  be possible to 
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typedef 
struct { 

int n;/* The number of factors. */ 
int t[MAX_FACTORS]; /* The factor type of the factor. */ 
ind id[MAX_FACTORS];/* The index of the factor. */ 
} expression_index_t; 

struct indexed_expression_struct { 
int n;/* The number of expression groups in this block. */ 
expression_index_t i[ MAX _ INDEXED _EXPRESSION]; 
expression_t *e[MAX_INDEXED_EXPRESSION], 
struct indexed_expression_struct *p; /* Pointer to next block. */ 
); 

typedef struct indexed_expression_struct indexed_expression_t; 

Fig. 5. The expression_index_t and the indexed_expression_t types. The former data type is a hash 
for terms within an expression. The latter stores the hash chains for the needed hashes 

quickly determine the index of a term and compare this to the indices of  other 
terms. The expression indices in SQSYM currently use the order and types of  
factors in the term to generate an index. When a term is added to an indexed 
expression, the list of  expression indices is scanned until a match with the index 
for the term is found. I f  a match is found, the term need only be compared with 
the terms in the expression associated with the matching expression index to sum 
it into the entire expression. Otherwise, a new expression index is added to the 
indexed expression list and the term is associated with this new index. In this 
scheme, only a small subset of  the terms must be examined to find out if the new 
term matches a term in the expression and, consequently, this method greatly 
relieves the strain on the computer 's  memory.  

Many other data types are used in the internal working of SQSYM, but all 
of  these details are not particularly interesting. Our principal goal is to provide 
enough information to allow a C programmer  to produce a symbol manipulator  
oriented towards the second quantization formalism without having to do any 
major  backtracking or trailblazing throughout the development process. To this 
end some hindsight should be added here to warn programmers  about  the 
disadvantages of  SQSYM. Of  course, it is easy to think of  equations to derive 
which exceed the limitations of  available machines. The symbol manipulation 
algorithms in SQSYM are fairly efficient when the required processing time is 
considered; however, we have found the required memory to be very large, even 
on a MIPS 2000/8 computer  equipped with 64 megabytes of  central storage. This 
does not simply refer to the total memory the program uses, but rather the 
amount  of  central memory  needed to prevent paging from becoming a major  
bottleneck. Some runs of  SQSYM could require a total of  150 megabytes, but do 
not cause a very heavy paging load on the system, while other runs could use 80 
megabytes total but access all of  these data in very rapid cycles, causing heavy 
demands on the paging subsystem. One simple way to reduce SQSYM's  memory 
requirement is to use 8 or 16 bit integers where possible instead of  the standard 
32 bit integers and this has been implemented. A more difficult approach would 
be to avoid fixing the dimensions of  the arrays, but, instead, replace the arrays 
with pointers to the data and make sure that just enough memory is allocated to 
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hold the data. The latter approach would increase the overhead associated with 
accessing, allocating, and deallocating the data and for these reasons was not 
chosen for use by SQSYM. Going back to modify SQSYM now would involve 
considerable work, but for a programmer starting from the beginning, more 
memory-efficient approaches are worth consideration, at least. 

SQSYM is a fairly large and complex program and simplicity of approach 
should always be strived for. Unfortunately, simplicity sometimes conflicts with 
efficiency. For example, in the index and factor pointers in faetor_t type there is 
some duplication within all of the factors in a term_t data type. To eliminate this 
redundancy within a term_t would probably sacrifice much of the simplicity of 
the algorithms and should be avoided if possible. 

2.4. Data manipulation 

As with the previous section on data representation, this section will discuss 
matters internal to the SQSYM program, specifically, the principal algorithms 
used to manipulate the data. Many of the tasks performed by SQSYM are quite 
simple. For example, the addition of two expressions requires only that the 
linked lists corresponding to the two expressions be joined together. Since we 
chose a linked list of arrays of terms as the representation for an expression, it 
is also desirable to copy a few terms into the empty slots at the end of one of the 
expressions to allow deallocation of the last expresslon_t link in the other 
expression if all of the slots in this link become empty after the copy. The 
multiplication of two expressions is also very simple, due to the representation 
chosen for terms. The product of two terms involves only copying the factors 
from the second term to positions after the factors in the first term and then 
offsetting the factor pointers, f, for the second term by a constant amount. Then 
the constant multiplicative factors are multiplied and simplified to remove 
common factors from the numerator and denominator. We see how the careful 
choice of data representation can make basic tasks like these routine. However, 
no choice of data representation can make everything simple. We still need to 
invest some effort to do certain tasks, the most difficult of which are taking the 
quasivacuum expectation value and term canonicalization. 

The quasivacuum expectation value is taken with the assistance of Wick's 
theorem. Wick's theorem provides a simple way to rewrite a product of creation 
and annihilation operators as a sum of normal ordered products of operators 
multiplied by Kronecker delta functions. Since the quasivacuum expectation 
value of a normal ordered operator is zero, only the terms which contain no 
operators survive. As mentioned earlier, when the expectation value of a product 
of expressions is needed, it is best to form the product between expressions at the 
same time as the quasivacuum expectation is taken. 

The procedure begins by setting up arrays describing the operators in each 
term of the expressions for which we need the product. This description is 
expressed with the type represented in Fig. 6 and is known as the excitation_ 
eount_t data type. Its members include vmin and vmax which respectively store 
the minimum and maximum number of excitations this term can produce relative 
to the quasivac~uum. Also included are the minimum and maximum number of 
excitations relative to each subspace, smin and smax, respectively. The reason the 
minimum and maximum excitation counts are not equal is that the indices of the 
creation and annihilation operators can range over several subspaces. For the 
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typedef 
struct ( 

int vmin; /* min number of excitations relative to the vacuum */ 
int vmax;/* max number of excitations relative to the vacuum */ 
int smin[MAX_SPACE][MAX SUBSPACE];/* relative to subspace */ 
int smax[MAX_SPACE][MAX_SUBSPACE];/* relative to subspace */ 
} excitation_count_t; 

Fig. 6. The exeitation_eount_t type. This stores information about the action of operators within 
terms and expressions 

expressions that are being multiplied an overall excitation count is determined 
for each by examining the excitation count for all of  the terms within each 
expression. Finally, starting from the leftmost expression in the product, the 
cumulative excitation count is obtained for each expression. 

With this information on hand we can begin efficiently building the product 
of  the expressions. The first term from the rightmost expression is chosen and its 
excitation count is compared to the cumulative excitation count. I f  the cumula- 
tive excitation count for the expressions from the left can potentially negate the 
cumulative excitation count for the terms from the right, then the next term in 
the product  is selected f rom the next expression to the left. Otherwise, the 
contribution to the product involving all of  the terms selected so far will be zero, 
since by the time we get to the quasivacuum on the right we must have 
something which will annihilate it. In this case another term is selected until one 
which gives a nonzero contribution is found. I f  such a term is found, the process 
proceeds to the next expression to the left of  the expression containing this term. 

At some point a term from each expression may be selected such that the 
quasivacuum expectation of  their product  will be nonzero. This term is handed 
to a routine which computes the fully contracted part  of  Wick's theorem and, 
hence, obtains the quasivacuum expectation value. The routine rewrites the term 
in such a way that all of  the fully contracted terms produced by this term are 
efficiently found. For  the purposes of  finding the contractions the operators are 
the only factors that are needed. Furthermore,  whether an operator is a creation 
or annihilation operator  is not as important  as its action on the quasivacuum. 
Operators are classified as R or L, indicating whether they annihilate the 
quasivacuum from the left, R]0) = 0, or the right, <01L = o. Some operators can 
annihilate the vacuum from both directions, because the range of their indices 
can span more than one subspace, so these can be R or L operators. Arrays are 
formed giving the action of  each operator  upon the vacuum and the type of each 
operator, which is either creation or annihilation in the current implementation 
of SQSYM, and this is all the data that is needed to begin forming the 
contractions. Wick's theorem states that contractions are formed only between 
pairs of  operators with an R-type operator to the right and an L-type operator 
to the left. The contraction routine starts by looping through all available pairs 
of  L and R operators. For  each pair it recursively calls itself to find the next pair. 
When it finds that no operators are left, it calls another routine which converts 
a list of  contractions into a term and adjusts its sign appropriately. The term is 
then canonicalized and summed into an indexed expression. Canonicalization 
and summing must be done as soon as possible to prevent an enormous scratch 
expression from being formed which would have many redundant terms. 
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The canonicalization procedure implemented in SQSYM is exhaustive. That  
is, if two equal terms which are not written in the same form are presented to it, 
then they are guaranteed to be rewritten in identical forms. Here, as in the 
Wick's theorem routine, a representation for the term must be chosen which is 
more suitable for this procedure. It is convenient to stop viewing the term as a 
product of  factors which have indices contracted with indices in other factors 
and start viewing the term as a single factor, the superfactor, with many indices. 
To form the superfactor the scalar factors in the term must first be reordered to 
a standard form. This is just a simple sort; the relative ordering of  factors which 
have identical ids is not yet a concern. The superfactor is then formed. Three 
arrays are used to describe the superfactor. The index array is equivalent to the 
i member of  the factor_t  data type. The range array is equivalent to the r 
member of the factor_t  type. There is no equivalent to the f member of  factor_t,  
because the term consists of  only one factor in the superfactor representation. 
Finally, we need the index permutation symmetries of  the superfactor. This 
permutation group is not simply the direct product of  the permutation groups of  
the constituent factors, because there is a possibility that a given type of  factor 
appears twice in the term, so we must include the direct product of  the symmetric 
groups describing the permutation of sets of  indices among the identical factors. 
Now we are ready to search for the canonical form of the term. 

The search begins by looping through all superfactor permutations. Each 
permutation is applied to the superfactor index array. The permuted index array 
is then compared to the most canonical index array found so far. The most 
canonical index array is initially set to the unpermuted superfactor index array. 
If  a permuted index array is more canonical than the most canonical index array, 
then the most canonical index array is replaced by the permuted index array. 
After all permutations are exhausted the most canonical index array contains the 
canonical superfactor. The definition of  "more canonical" is somewhat arbitrary. 
The method used by SQSYM is to compare the permuted index array to the 
most canonical index array, index by index, starting from the left. If  the value of  
the index array member for the permuted index is less than the value of  the most 
canonical index, then the permuted superfactor is more canonical than the most 
canonical superfactor. If  the values are the same, then the next indices to the 
right are considered. If  all of  the indices are identical, then the range arrays are 
examined in a similar manner. Since each index array member is repesented as an 
integer and each range array member is expressed as two integers, the compari- 
son of  these members is a computationally efficient process. For  canonicalization 
to be truly exhaustive there is one restriction on the term. All of the ranges in the 
terrn must be a simple subspace. For  example, a range may be particle or hole 
but cannot indicate a summation over both subspaces. This restriction is not 
intrinsic to the canonicalization algorithm; it is only needed if all equivalent 
terms are guaranteed to be transformed into identical forms. 

The number of superfactor permutations can become quite large, with several 
thousand permutations commonly needed. Less computationally demanding 
algorithms could be developed which do not rigorously canonicalize the term. 
The faster algorithm could be used to combine and eliminate the majority of  
terms and then a complete canonicalization could be performed to finish the 
simplification of the expressions. However, it has been found that canonicaliza- 
tion is not the limiting step in SQSYM. The time spent in various routines during 
typical calculations was obtained and showed that canonicalization was second 
to the quasivacuum expectation value in processor time used during the symbol 
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manipulation process. Translation of the equations into an executable form was 
found to require more processor time than the canonicalization and quasi- 
vacuum expectation processes combined. 

2.5. Executable code generation 

The simplified expressions generated by SQSYM can contain thousands of terms. 
It would be difficult to write a program which uses these equations to compute 
the properties of a molecule. Thus, SQSYM must further process the expressions 
and compile them into a form that is suitable for execution. One possible 
approach would be to convert the expressions directly into Fortran. An advan- 
tage of Fortran is its wide availability, including vectorizing and paraUelizing 
dialects. Compilation into Fortran was, in fact, first implemented and still 
remains an option; however, difficulties were encountered. The Fortran programs 
produced were so long that compilation times for the Fortran compiler were 
significant and in some cases the compiler even abended due to the length of the 
code. Currently, Fortran is avoided as the target language of SQSYM. Rather, 
a custom language has been developed which simply and compactly describes 
the computation of an expression. This language will be called the correlation 
energy language, CORR, and the CORR interpreter is the program which will 
execute the file containing the CORR language and compute the correlation 
energy. 

The commands which must be a part of the CORR language are best 
understood by first examining the procedure for converting an expression into an 
executable program. Let us start by considering an expression with one term: 

astuv = XuijkYvutZk~s,. (2.14) 

Assuming that each index ranges from 1 to n, the result, a, can be most 
straightforwardly computed with 2n 8 floating point multiplications. This would 
be done by using a loop for each index. However, a considerably more efficient 
approach exists. Suppose we break the formation of a into two binary products. 
The first binary product forms an intermediate array which is then contracted 
with the remaining array to form a. Table 5 illustrates the possibilities. This table 
lists the binary product being considered, the result of forming the binary 
contraction, the number of floating point multiplications required, the amount of 
memory needed for intermediates, and the cumulative number of multiplications 
required for the algorithm. The least expensive routes use a total of 2n 6 floating 
point operations and require intermediate storage for n 4 floating point numbers. 
One of these least expensive routes involves first forming the intermediate ~ by 

Table 5. The computational complexity for various evaluation routes for a sample term 

Binary product Result Mult. Memory Cum. mult. 

Xuijk Yvijt ~ v l  n 6 n 4 n 6 

Xui jk  2k ls t  fluijlst n 7 n 6 n 7 

YvutZklst ~vijkst n 7 n 6 n 7 

O~ukvlZklst astuv n 6 _ 2 n  6 

f lui j ls tYvi j l  as tuv n 7 _ 2 n  7 

Yvijkst Xuijk astuv n 7 _ 2 n  7 
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contracting x with y and then forming the result a by contracting ~ with z. Given 
a term, SQSYM's dataflow command will examine all of the possibilities and 
choose the least computationally intensive method. If two terms have the same 
computational complexity, then the method requiring the least space for the 
intermediates is chosen. The principal deficiency of the term optimization 
algorithm implemented in SQSYM is that index permutation symmetries are 
ignored. However, no implementations of such an algorithm will be able to 
guarantee that the generated procedure will have minimal computational com- 
plexity. This is because exact information about the ranges of the loops are not 
known at compile time. Furthermore, the use of point group symmetry consider- 
ably complicates the matter. A good job of optimizing the terms can be done 
without all of this information by giving SQSYM an approximate dimension for 
the ranges of the loops. These dimensions are represented by two integers, i and 
j, and are taken to be in-'. The integer n is unspecified and its precise meaning is 
arbitrary. We typically take n to be the number of occupied orbitals, so i and j 
both equal one for the hole orbitals. Since the number of particle orbitals is 
usually larger than the number of hole orbitals for a reasonable basis set, i is set 
to two for particles while j remains one. In open-shell triplet calculations the size 
of the range for the singly occupied orbitals would be two; thus i would be two 
and j would be zero. 

Unfortunately, many more considerations arise when we need the optimal 
algorithm for computing the result of an expression consisting of more than one 
term. This is because some of the intermediates may have already been computed 
and if they are retained in storage instead of deallocated after their first use, they 
can be used again at the expense of an increased memory requirement. The 
optimal algorithm for computing a single term may no longer be optimal when 
the entire expression is considered. Another algorithm may involve an intermedi- 
ate which has been computed beforehand and might become less computation- 
ally expensive when the entire expression is considered in the optimization 
process. Thus, the optimization of a term in an expression becomes coupled to 
the optimization of all other terms in that expression. In fact, the problem is even 
worse than this; the optimal algorithm depends upon all terms in all of the 
expressions which are to be evaluated, not just the expression in which the term 
under study appears. The complete minimization of the computational complex- 
ity for the evaluation of a set of expressions has not been implemented in 
SQSYM. Even if an exhaustive minimization were implemented, the processor 
time required would prohibit its use in all but the simplest cases. 

The simplified approach taken in SQSYM is invoked with the dataflow 
command. This command is first used with an initialization option to prepare the 
dataflow routines. Following initialization, dataflow can be executed any number 
of times with expressions as arguments. These invocations build up an intermedi- 
ate language which contains information about the expression. The intermediate 
language is implemented with data structures consisting of the members, op, 
argl, arg2, and result. The members argl and arg2 specify the addresses of the 
data which are to be used and result gives the address of the data to be created. 
In general, the ordering of argl and arg2 is important. The op member is 
assigned to one of four operations to be performed upon the arguments, 
contract, accum_delta, free, and ptrace. Sometimes these operations require 
supplemental information which is stored in the detail member. 

The contract operation indicates that a binary contraction between the two 
arrays is to be done. The detail member is used to specify the external indices and 
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the indices to be contracted. The contract operation generates a new piece of  
data, the address of which is placed in result. 

When the intermediate language has used this temporary datum for the last 
time it can be deaUocated with the free operation which takes one argument and 
produces no result. The actual deallocation of  the data does not take place in 
SQSYM, since the data is never allocated in SQSYM. The storage is really 
allocated and deallocated when the CORR interpreter is run; however, the 
dataflow component of  SQSYM must keep track of the data that the CORR 
program is going to manipulate, so that memory can be efficiently used when 
CORR is run. 

The accum_delta operation takes one argument and sums it into the result. 
This is very different from the contract operation which creates a new result. The 
result of aceum_delta is preallocated and is specified as an argument to the 
dataflow command. The aeeum_delta operation is so named because it also 
allows the accumulation of data which can be written as an array or the product 
of  an array and a delta function between external indices. Products of  delta 
functions between external indices and arrays sometimes arise and handling these 
cases directly with aceum_delta avoids the waste of  central storage which would 
result from actually forming the product of the delta function and the array 
before the accumulation step. 

The ptraee operation takes one argument and allocates a result. It forms 
contractions over pairs of  indices within the single argument. Given in the detail 
member are the lists of external and internal indices along with which pairs of 
internal indices are contracted. 

When the dataflow routines optimize a term, all possible ways of forming the 
result through binary contractions of  factors and intermediates are considered. 
As each contraction is considered the dataflow structure is inspected to see if that 
contraction already exists. I f  so, the previously computed intermediate can be 
used instead of the contract operation and the processor time that would have 
otherwise been needed for this contraction is not added to the computational 
complexity for this term. This type of  optimization is known as common 
subexpression elimination. 

The dataflow structure is organized into levels. Level zero consists of 
statements in the intermediate language which define the known arrays, such as 
the Hamiltonian matrix elements and the cluster coefficients from a previous 
iteration. Level one contains statements which depend on data in level zero; level 
two's statements depend on data produced in level one and the data defined in 
level zero; and so on, but no level uses data which is generated on the same or 
following levels. The rationale for this sort of organization is to allow parallel 
execution of the statements on the same level. Whether or not parallelism is 
achieved depends on the implementation of  the CORR interpreter. The current 
CORR interpreter is written in Fortran 77 and with some modifications could be 
parallelized on any shared memory multiprocessor running the UNIX operating 
system or on multiprocessor IBM S/370 machines if a parallelized dialect of  
Fortran [39] is installed. Current implementations of  the CORR interpreter do 
not use parallelization. In this case, it is best to generate only one CORR 
statement per level, since this will allow deallocation of  scratch arrays at the 
earliest possible time and will lighten the memory requirements. 

After all terms have been represented in the dataflow struoture, the dataflow 
command is invoked with options which tell it to convert the intermediate 
representation into the CORR language and place it in an output file. The 
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CORR language is nearly identical to the intermediate representation, except it 
is converted into a text representation so that the same CORR language files can 
be ported to a variety of computers. The contract, free, aeeum_delta, and ptrace 
operations respectively translate directly into the CNTR, FREE, ACDL, and 
PTRA commands in the CORR language. However, an additional command 
must be added if parallelized implementations of  the CORR interpreter are 
desired. This command is LEVL, which can be used by the interpreter to 
determine which statements can be executed simultaneously. The datallow com- 
mand produces the LEVL command whenever it begins translating a new level 
in the dataflow structure. 

Although the CORR language program produced by SQSYM is optimized 
to some extent, there are many things which can be done to improve the 
execution time of the CORR program without modifying the CORR interpreter. 
The only optimization of the dataflow structure currently implemented is full 
term optimization with common subexpression elimination. The contractions 
between factors and intermediates have commutative and associative properties 
which can be used to further simplify the datafiow structure. These properties are 
not yet utilized in SQSYM. Also, even though the number of statements on a 
given level is kept at one to minimize waste of memory, the memory is not used 
as efficiently as possible. This is because rearrangement of  the dataflow levels can 
result in a smaller amount of memory dedicated to intermediates at any given 
time. The optimal rearrangement of levels would require the least amount of  
memory. Rearrangement to the optimal ordering of levels would be extremely 
difficult. One reason for this difficulty is that actual dimensions of  each of  the 
subspaces are not known at translation time. Another problem is that the way the 
CORR interpreter deals with memory may create areas of  temporarily unusable 
memory in the process of repeatedly allocating and deallocating memory, thereby 
increasing the total memory requirement in ways unknown to SQSYM. 

Finally, even if approximations are made about the dimensions of the arrays 
and the memory allocation and deallocation procedures that CORR uses, the 
number of  levels can become enormous. For  example, suppose we are optimizing 
the CORR language program for execution on a uniprocessor machine. Then, it 
is desirable for each level to contain only one operation, since parallel execution 
is not of use on a uniprocessor machine and the use of only one operation per 
level allows the most flexible optimization of memory use. However, some of  the 
dataflow structures contain very many operations. For  one of  the open-shell 
coupled cluster techniques discussed in Sect. 3 there are over 15,000 operations, 
making even approximate optimization a formidable computational task. Opti- 
mization of the use of memory is not performed in the current implementation 
of  SQSYM, except that intermediates are deaUocated after their last use. No 
attempt is made at level rearrangement. When more powerful machines are at 
our disposal, once again work along these lines will continue. 

2.6. The CORR program 

We have learned how to generate a partially optimized CORR language pro- 
gram. Now a program, called the CORR interpreter, must be developed to 
execute this language. Another language must now be chosen to implement the 
CORR interpreter and we chose Fortran 77 because it is available on all of  the 
machines to which we have access. In addition, our research group has already 
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developed Fortran language programs to compute and write to disk the matrix 
elements of the Hamiltonian, although it should be pointed out that the use of 
Fortran has greatly obfuscated many of the algorithms employed. Other lan- 
guages, such as C and object oriented versions of C, should be considered by 
anyone beginning a project like this from scratch. 

The CORR program is actually a fairly short and simple program. Most of 
the difficult work has been moved out of CORR and into a library, DTLIB, 
which provides a variety of routines for manipulating multidimensional arrays of 
real data, such as the Hamiltonian and cluster coefficients. The DTLIB routines 
allow the arrays to have index permutation symmetries and point group symme- 
try, with the restriction to finite nondegenerate point groups. Cole and Purvis 
[40] have developed a routine similar to one of the primary DTLIB routines, 
namely that routine which takes the contraction of two arrays. Their implemen- 
tation does not permit index permutation or point group symmetries; however, 
it enjoys the advantage of being able to work with arrays that are stored on disk 
devices. The DTLIB library requires that all arrays be kept in the fast central 
storage of the computer, although, with some more work, these arrays can be 
disk resident and efficiently accessed. This work is planned for future revisions of 
the DTLIB library. 

Before CORR is executed, another program, SORTER, must be run to sort 
the Hamiltonian into the format that DTLIB uses. When CORR starts up, it 
reads in the arrays produced by SORTER. All the addresses of these arrays are 
kept in another array, the address array. The commands which CORR interprets 
refer to locations in the address array, rather than the address of the array itself, 
since these addresses vary from case to case. Correspondences between locations 
in the address array and the factors are made known to SQSYM through the 
data_address and result_address commands which interface with the compiler 
portion of the SQSYM interpreter/compiler. The CORR program must 
make identical correspondences when it initializes the address array. After 
CORR completes its initialization it begins interpreting the CORR language file 
produced by SQSYM. After the interpretation is finished, the result of the 
expression evaluation is placed in the array pointed to by the address array 
elements specified in the result_address command. For all of the correlation 
energy calculations which CORR currently can do this represents only one 
iteration. The result of evaluating the expressions is used to update the wave- 
function guess for the next iteration. For example, in coupled cluster theory, 
the resulting expressions should be zero when the equations are converged. If 
the root mean square of the result coefficients is above some tolerance, then 
another iteration begins. The cluster coefficients for the next iteration are 
obtained by absorbing the error in each result into the cluster coefficient 
which is dominant for that result. Note that the CORR language has no 
provisions for iteration or updating the cluster coefficients. These could be 
included, but the CORR language is probably best kept as simple as possible. 
Since extrapolation methods will be eventually incorporated into CORR, it 
would be desirable to be able to take advantage of these methods without 
rewriting the CORR language file, which is most easily done if the CORR 
language does not explicitly iterate. 

It has been mentioned earlier that execution of the CORR program could be 
accelerated if SQSYM would more thoroughly optimize its intermediate lan- 
guage and, thus, the CORR language program into which it is translated. 
However, the performance of CORR is not solely determined by the quality of 
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code that SQSYM produces. The CORR program does time-consuming opera- 
tions on large pieces of data and the performance of the CORR interpreter for 
a given CORR language input must also be scrutinized. The SQSYM program 
and the CORR program both allow index permutation symmetries to be 
specified, but, due to limitations in both SQSYM and CORR, the intermediate 
arrays produced by the CNTR command, which forms a contraction, have no 
index permutation symmetries. This wastes both processor time and storage. A 
benefit provided by CORR is the efficient method it uses to form contractions. 
First, the arrays involved are repacked in a way that allows the contraction to be 
expressed as a matrix multiply. After the matrix multiply, the inverse of the 
packing procedure is applied to place the resulting matrix into a multidimen- 
sional array. This is done one symmetry block at a time, so full advantage of 
point group symmetry is taken. This method does introduce overhead associated 
with repacking the arrays, but, for typical electronic structure theories, the ratio 
of overhead to processor time would tend to zero as the size of the system 
studied tended towards infinity. For example, in CCSD, the largest array has a 
size that goes roughly like n 4, where n is the number of doubly occupied orbitals. 
Thus, the overhead associated with repacking the array increases with n in a 
manner no worse than n 4. However, the most computationally intense terms 
increase like n6; thus, for large enough n, the overhead associated with repacking 
becomes insignificant. Also, the most computationally intense term becomes a 
matrix multiply between two matrices of dimension n 2. A matrix of this size is 
large enough to make efficient use of vector architectures as well as allowing the 
use of fast matrix multiply algorithms [41] which can reduce the n dependence of 
the processor time needed for these terms from n 6 t o  n 5"61 or less. 

3. Applications of SQSYM 

The symbol manipulator discussed in Sect. 2 has been applied to a variety of 
electronic structure theories, some well-known and some not yet discussed in the 
literature. The better-known methods include configuration interaction with 
single and double (CISD) excitations from a single reference. For this case 
SQSYM was used to produce spin-adapted equations for closed-shell and 
high-spin open-shell (HSOS) types of reference functions. These methods are 
presented to further illustrate the use of SQSYM. The correlation energies 
produced by SQSYM/CORR for these methods agree with energies generated 
independently with a graphical unitary group approach (GUGA) CI program 
[42]. The spin-adapted closed-shell coupled cluster case has also been investi- 
gated and SQSYM/CORR was found to produce correct results for this case as 
well; however, this will not be presented in the present work. 

The extension of CCSD theory to the HSOS case is of primary interest in this 
work and three avenues have been pursued along this line. The first is the 
implementation of the method of Rittby and Bartlett [28] where a spin unre- 
stricted cluster operator acts upon a restricted Hartree-Fock (RHF) reference 
function which is of the HSOS type. Spin contaminated contributions to the 
energy do not occur with this technique, but the equations for the wavefunction 
are spin contaminated. Second, a method which uses a cluster operator which is 
chosen using the criteria set forth by Nakatsuji and Hirao [29]. While this cluster 
operator does not produce spin contamination when operating upon the refer- 
ence wavefunction the cluster operator does produce states of incorrect spin 
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symmetry when its square operates upon the reference. The spin contamination 
is completely projected out in the equations for the wavefunction and energy in 
this case. Finally, a method which uses a cluster operator which commutes with 
S 2 is presented. No spin contamination arises at any point in this method. 

3.1. The closed-shell  CISD equations 

Let ]0) be a closed-shell RHF reference function. The CI wavefunction, [~u), can 
be written as a linear combination of 10) and excitations thereof, X[0): 

I = p0) + xl0) ,  (3.1) 
where I~g) is normalized such that (~u[0)= 1. The spin-adapted excitation 
operators for CISD can be written in terms of the unitary group generators, 

= Z aLaq , (3.2) 

to form a linearly independent, although nonorthonormal, set of excitations 
from the reference: 

X = X~ + X2, (3.3) 

where 

X~ = ca E a, (3.4a) 

)(2 = c~a Eb E~ . , (3.4b) 

and the c~ and c) ~a are arrays which are yet to be determined. The indices i and 
j refer to orbitals which are doubly occupied in the reference and the indices a 
and b refer to those orbitals which are not occupied in the reference. The c arrays 
possess the index permutation symmetry 

c jt a ab = c u . ( 3 . 5 )  

The Schr6dinger equation, in terms of the normal-ordered Hamiltonian, may 
be written 

H . ] ~ )  = Ecorr[~ ). (3.6) 

The energy can be computed by projecting both sides of this equation by (0[ to 
get 

E~orr = (0[Hn [~). (3.7) 

The equations for the c arrays are determined by projecting Eq. (3.6) from the 
left by the singly and doubly excited states: 

gcorr(0lEL I~)  = <O[E~HI~) 
and 

Eeorr<O[EJb E i  I~/> = <0IELELHI~ >. 

(3.8a) 

(3.8b) 

However, these equations are not yet in the correct form for iterating upon. For 
a given choice of i, a, b, and j the projection for X2 contains large contributions 
from two c elements, cj b.a and ba c o. , both of which multiply diagonal elements of 
the Fock matrix. There are two ways to get a large contribution from only a 
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single c element; we can take linear combinations of the above equations or we 
can change the projection scheme. Changing the projection scheme has the side 
effect of simplifying the derivation of the equations as well. A possible choice for 
the new states which project out the c equations are the determinants 

a~ai~ I O) (3.9a) 

and 

a~ai~a~ai# 10> (3.9b) 

which are not eigenstates of electron spin. Equation (3.9a) can be expressed as a 
linear combination of 

E~ IO> (3. lOa) 

and 

( a * ~ a i ~  - a~aaia)]O>. (3.10b) 

The latter of these states is a triplet. Thus, when it projects upon any singlet spin 
function, such as I~ > or H] V >, it will give a contribution of zero and we are free 
to take linear combinations of this triplet state with the original symmetry 
adapted state to obtain a state which can be used to project the equations. In a 
similar manner, the above doubly excited determinants, Eq. (3.9b), can be 
obtained by linear combinations of states with states of spin symmetry different 
than the reference as well as states of the correct spin symmetry. When linear 
combinations of states of the correct spin symmetry are used to form a projector, 
it is important to only transform among the set of states which were in the 
original set of projectors. This restriction is trivial to observe in the closed-shell 
case; the only way to violate it is to include triply excited states. However, in the 
open-shell case the excitations are limited to the interacting space and it is easy 
to accidentally project upon an undesired state, even though it is of the 
appropriate spin symmetry and appears to have only double excitations in it. 
This will be discussed in more detail below. 

3.2. The high-spin open-shell CISD equations 

The problem to be solved here is exactly the same as in the closed-shell CISD 
case, except the reference function now contains some orbitals with only c~ spin 
electrons. The excitations which interact with the reference through the Hamilto- 
nian are 

E I0>, (3.11a) 
E a 10>, (3.11b) 

Exl0>, (3.11c) 

E~E a 10>, (3.1 ld) 
b a ExE i 10>, (3.1 le) 

EyE~[O), (3.110 

EYE'y 10), (3.1 lg) 
b a EyEx 10>, (3.11h) 



Automated solution of second quantization equations 33 

and 

E Y E ~  ]0), (3.1 li) 

where the x and y indices refer to those orbitals which are singly occupied in the 
reference. To form the CISD wavefunction coefficients must be associated with 
these exictation operators. These coefficients are 

c a , (3.12a) 

c~, (3.12b) 

c x, (3.12c) 

cjt[ ' = C ijab, (3.12d) 

b~ (3.12e) ¢x i  , 

e~ ~, (3.120 

cjy, ~ = - cb ~ = - c~ y = c~ y,  (3.12g) 

ba ba ab __ ~b (3.12h) Cy x ~ - - C x y  ~ - - C y  x - - C x y  , 

and 

cyff. (3.12i) 

As with the closed-shell case it is easier to project upon a simpler set of 
states. A possible set is 

and 

a ~ a i ~  10), (3.13a) 

ata~ax, 10), (3.13b) 

a ~ a i p  10), (3.13c) 

t t aaal ai~ l ab~zaj~2]O), (3.13d) 
t t ax¢aiaaa~aj~ ]0), (3.13e) 

a ta~ax, a tb~ai~ 10), (3.130 

a~aa~aty¢aj# [0), (3.13g) 

a ~ a ~ a t b ~ a y ~  ]0), (3.13h) 

a t a ~ t  
xfl ifl'act~yct [0). (3.13i) 

Note that in these states some of the summations over the spin variable, a, could 
not be replaced by an ~ or ft. This is necessary to avoid projecting by states that 
are linear combinations of states from both inside and outside of the interacting 
space. The effect of partially including some of the noninteracting space in the 
projection would typically be an increase in the computed CISD energy, since the 
noninteracting space can interact through the Hamiltonian operator with only 
states excited from the reference. However, this is in contrast to those CISD 
calculations where the noninteracting space is included in add i t ion  to the interact- 
ing space. The extra configurations introduced in this case would always lower 
the CISD energy, usually by only a small amount. 
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3.3. High-spin open-shell coupled cluster singles and doubles 

The ideal CCSD theory for the HSOS reference would allow direct comparison 
to the closed-shell CCSD energies and have similar computational resource 
requirements. Thus, desirable qualities in the HSOS CCSD method would be the 
use of a reference function optimized for the state under scrutiny and a cluster 
operator which consisted of all the excitations which can interact with the 
reference wavefunction through the Hamiltonian. Also, a wavefunction which is 
an eigenfunction of the S 2 operator is greatly preferred. The ideal HSOS CCSD 
method would be obtained by substituting the excitation operator, X, introduced 
in the above HSOS CISD method for the closed-shell cluster operator and 
substituting the HSOS reference directly for the closed-shell reference. It should 
be mentioned that since the HSOS reference can be written as a single determi- 
nant, the reference can be considered as the quasivacuum. This allows expecta- 
tion values with respect to the reference to be evaluated directly using Wick's 
theorem. 

The wavefunction in terms of the cluster operator, T, and the reference, [0) 
is written 

where 

17t) = er l0) ,  (3.14) 

T = t~E~ I O) + t~E~ 10) + t~.E~[ I O) 
ba b a ba  b a x a  x a + t j, E~ Ei 10) + tx, E~E~ IO) + t j, E~ E i Io> 

t b a  lT.b E a -4- t Y . a ~ ? (  E a + -j,tY~F~E~-j --, 10> + -yx--y--x i0> -- -ix - j  - x  i0> • (3.15) 

Substituting 17 ~ > into the Schr6dinger equation gives 

Hnerlo> = Ecorrerlo> (3.16) 

and projecting on the left by e - r  we obtain 

Heed0 > = Ecorrl0>, (3.17) 

where 

Herr= e - t r i ne  r. (3.18) 

The effective Hamiltonian, H~fr, can be rewritten as a multicommutator expan- 
sion: 

1 1 
Hef t = 1 --[- [H, T] + 7 [[H, T], T] + ~ [[[H, T], T], T] 

1 
+ ~. [[[[H, T], T], T], T] + . . . .  (3.19) 

For the closed-shell case this expansion terminates after four commutators. 
Furthermore, for the closed-shell case, the effective Hamiltonian can be written 
as the connected part of Her: 

H~f; = (He r ) . . . .  • (3.20) 

Unfortunately, neither of these observations hold in the HSOS CCSD method. 
The breakdown of these two simplifications occurs because T is made to preserve 
the spin of any state it acts upon. For example, the term in T which is 



Automated solution of second quantization equations 35 

responsible for single excitations from the open-shell orbitals to the particle 
a ~" which contains an annihilation operator that acts upon orbitals is txaa, ax~, 

open-shell orbitals with fl spin. The annihilation of orbitals unoccupied in the 
reference and the creation of electrons in orbitals already in the reference cause, 
when quasivacuum expectation values are taken, contractions between the 
Hamiltonian and/or T operators and T operators to the left of these. The new 
T - H  and T -T  contractions did not exist for the closed-shell case, which only had 
t t - T  contractions, and are the cause of considerable complexity in the HSOS 
case. The T - t t  contractions are what make the relation Herr = (He r)  . . . .  invalid, 
despite the fact that the multicommutator expansion for Herr makes it a con- 
nected quantity. 

In addition to the equivalence of the reference and the quasivacuum, which 
other open-shell coupled duster cases formulated in this way might not enjoy, 
the HSOS CCSD case does have another simplification, and that is that the 
multicommutator expansion does in fact terminate after eight commutators [43] 
no matter how many singly occupied orbitals there are in the reference. This is 
because all of the terms in the T operator contain at least one particle or hole 
index. Particles and holes in the T operator are always created, or, said another 
way, electrons in particle orbitals are always created and electrons in hole 
orbitals are always destroyed. Equivalently, the new T - t t  and T -T  contractions 
only arise for the open-shell orbitals. Projecting onto doubly excited states can 
annihilate at most a total of four particle and hole states. The Hamiltonian has 
at most two-body terms, and therefore, at most, can annihilate four particles and 
holes. If at most eight total particle and hole excitations can be annihilated, at 
most eight total particle and hole excitations may be created by the T operators; 
otherwise the quasivacuum expectation value will be zero. Thus, at most eight T 
operators may appear in a term in HSOS CCSD theory and the multicommuta- 
tor expansion must terminate after eight commutators. 

The SQSYM program discussed in Sect. 2 has been used to derive the HSOS 
equations. Care has been taken to make SQSYM an efficient method for deriving 
second quantization equations. Despite this, some of the derivations are quite 
demanding. For example, the spin-adapted closed-shell CCSD equations could 
be derived in a few minutes on a Sun 3/80 workstation. The 202 seconds it took 
to derive the HSOS triplet terms which were quadratic in T on a MIPS 2000/8 
computer, over six times faster than the 3/80, demonstrate the formidable 
complexity of the equations. Unfortunately, this is just the beginning; the 
number of terms arising which are cubic in T explodes and the time taken to 
derive these terms is 3,912 seconds on the MIPS machine. The number of terms 
quadratic in T is 4,083 and the count of the cubic terms is 12,551. The time 
needed to evaluate terms with very high powers in T will eventually drop off 
because SQSYM can recognize which products of T operators cannot make a 
contribution to the quasivacuum expectation value. The rate limiting step in 
SQSYM is not the derivation of the equations, however. Most of the processor 
time is used to compile the equations into the CORR language, for which the 
SQSYM program required, for all terms up to the cubic power in T, 38,279 
seconds. Improvements in SQSYM and in computer performance will make the 
derivation of equations with higher than cubic powers in T possible, but it will 
be argued in Sect. 4 that these terms will not significantly change the answer for 
most problems. 

The code produced does have the best possible n dependence, where n is the 
number of electrons. The memory requirement is n 4 and the processor time 
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requirement is n 6 for HSOS CCSD. However, the multiplicative factors for these 
n dependencies are much larger with the current implementation of SQSYM than 
they need to be, so current applications of HSOS CCSD theory to actual 
molecules tend to consume more resources than necessary. Future improvements 
to SQSYM and the CORR program will relieve some of this computational 
burden; however, an exhaustive optimization of the equations is much too time 
consuming, so some manual assistance must be given to SQSYM. One method 
of providing assistance to SQSYM is to explicitly recognize linear combinations 
of cluster coefficient which arise naturally in the equations. For the closed-shell 
case an important improvement in the algorithms is obtained by working with 

a b (3.21) z~ b = t'i~ + t i  tj 

instead of just t~ b. In the HSOS CCSD there is a possibility that great 
simplifications could be made by working with a z~j b expressed in terms of 
expressions like 

a b (3.22a) t i t j ,  

t a t b t x t Y  (3.22b) x - y ~ i  ~j , 

t a b t x y  (3.22c) x y - i j  , 

and so on. Similar intermediates might be found for the other two-body cluster 
coefficients as well, but it is as yet unknown how much benefit the use of these 
intermediates will provide. Access to faster computers is needed to continue 
work along these lines. 

3.4. The high-spin open-shell partially spin-adapted CCSD method 

The equations for HSOS CCSD theory are quite cumbersome. A simplified 
approach akin to that used by Nakatsuji and Hirao [29] has also been investi- 
gated. Nakatsuji and Hirao recommended using a cluster operator which gener- 
ates only spin eigenfunctions when it operates upon the reference wavefunction, 
but removing all operators which give rise to the T - T  and T - H  contractions, 
which cause much of the difficulty in HSOS CCSD. This gives a wavefunction 
which has spin contamination in the terms with two or more powers in the 
cluster operator, which suggests projecting out the spin contaminants. Nakatsuji 
and Hirao never implemented this for more than single excitations from the 
reference. In fact, for triplet states they have employed a completely different 
method [31], which starts with a reference which is not an eigenstate of S 2, 
perhaps because the complexity of the equations for the method they had earlier 
proposed prohibited its further development. However, SQSYM has no problem 
with these equations; in fact, they are quite a bit simpler than the fully 
spin-adapted HSOS CCSD equations. 

The cluster operator in this method, which will be called the high-spin 
open-shell partially spin-adapted CCSD method (HSOS PSACCSD), is obtained 
directly from the HSOS CCSD cluster operator by eliminating the components 
of the cluster operator which annihilate the reference. Thus, for the cluster 
operator we are left with 

a a a f x f tb .aEbF..q ~bat,~f a i~i'a t xaa" f  , r , ,  iWa 
Tps  A = t~ E i + txa~ax~ + t i a x B a i #  + .j~ _ j  _ ~  + "xi ~b~t~xctL'i "~- t j i  ~ x f l ~ j f l L ' i  

+ yx , , b a t  * ya * * (3.23) tJi a yaag~a xaai ~ + t yxa b~ay~a a~ax~ q- t jx a ylJajl~a a~axa . 



Automated solution of second quantization equations 37 

There are some similarities between this choice of the cluster operator and 
the use of a normal ordered wave operator. The action of the normal ordered 
HSOS CCSD wave operator, (er)n.o., and the HSOS PSACCSD wave operator, 
e rpSA, on the reference is identical: 

(e r )  .... 10) = ErvsA[0). (3.24) 

However, this is only true when the wave operators act upon the reference. In 
general, 

((er) .... )-1 ~ e--TpsA (3.25) 

and when the inverse of the wave operator is applied to both sides of the 
Schr6dinger equation the theories using the normal ordered wave operator and 
the exponential wave operator will differ. The advantage of using the exponential 
wave operator is the simplicity of the form of its inverse. 

The equations developed using these operators superficially resemble the 
closed-shell theory more than the HSOS equations. As with the closed-shell case, 
Herr terminates at the fourth commutator and Herr = (He r)con n. However, one 
must take care to project out the spin contaminants in the wavefunction by 
proper choice of the states that are used to project out the equations for the 
cluster coefficients. The simplified projection scheme used in the HSOS CISD 
and CCSD methods will produce a spin contaminated wavefunction if used in 
the HSOS PSACCSD method. Instead, states constructed from products of 
unitary group generators should be used. 

4. Applications of open-shell coupled cluster theory 

The techniques discussed in Sect. 2 have been applied to the open-shell coupled 
cluster theories presented in Sect. 3 as well as the method of Rittby and Bartlett 
[28] to produce pilot programs that can be used to evaluate the relative potential 
of these methods. The size of the chemical systems and the basis sets employed 
are limited to be fairly small, so emphasis will not be placed on comparisons to 
experiment. Rather, the new methods will be compared to the CISD and the full 
CI methods. 

4.1. The single-triplet splitting in methylene 

The energies for the 3B 1 and 1A 1 s t a t e s  of methylene are reported in Table 6. The 
configuration interaction with all singles and doubles (CISD), CISD with the 
Davidson correction (CISD + Dav.), and the full CI results were obtained by 
Bauschlicher and Taylor [44]. Their CISD calculations did not restrict excita- 
tions to the interacting space [45, 46]. This has no effect on the 1A 1 energy; 
however, the 3B 1 energy computed in this way yields an energy which is lower 
than the energy computed with an interacting space CISD. The biggest error in 
the energy is in the treatment of the ~A1 state, because it is better described with 
a two reference starting function. Thus, the CISD results fall above the 1.~41 
energy more than CISD will fall above the aB~ energy and AEIAI_aBI will be too 
large. Not restricting the 3BI CISD excitations to the first order interacting space 
will slightly aggravate the problem. Also shown in the table are the results with 
the 3B 1 CISD excitations restricted to the interacting space, CISD(int. space) and 
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Table 6. The singlet-triplet splitting of methylene, predicted by theoretical methods described in the 
text. When different methods are used for the singlet and triplet wavefunctions, the notation 3B 1 

method/]Al method is used 

Method E3B, (a.u.) E1A, (a.u.) AE (kcal/mol) Error 

SCF -38.927947 -38.886297 26.14 14.17 
CISD -38.041602 -38.018284 14.63 2.66 
CISD +Dav. - 39.046910 - 39.027222 12.35 0.38 
CISD(int. space) -39.041199 -39.018284 14.38 2.41 
CISD(int. space) +Dav. -39 .046408  -39.027222 12.04 0.07 
UCEPA -39.047715 -39.028718 11.92 -0.05 
PCCSD/CCSD(4c) -39.044076 -39.023639 12.82 0.85 
PSACCSD(4c)/CCSD(4c) -39 .043799 -39.023639 12.65 0.68 
HSOS CCSD(lc)/CCSD(lc) -39.046476 -39.030131 10.26 -1.71 
HSOS CCSD(2c)/CCSD(2c) -39.044028 -39.023639 12.79 0.82 
HSOS CCSD(3c)/CCSD(4c) -39.044026 -39.023639 12.79 0.82 
full CI - 39.046260 - 39.027183 11.97 0 

CISD(int.  s p a c e ) +  Dav. These show an improvement of  AE~AI_3AI relative to 
the full CI result by 0.3 kcal/mol. In fact, the CISD(int.  space) + Day. AEtA,_3B1 
misses the full CI result by only 0.07 kcal/mol. The CISD + Day. method 
frequently gives very good results for small systems, but this method's  serendip- 
ity will run out as the systems get larger, since CISD + Day. suffers from CISD's  
lack of size extensivity. 

In all of  these CISD calculations only single reference treatments of  the 1A 1 
state have been considered. This is because, although a multireference coupled 
cluster method which is capable of  correctly describing the ~A1 state has already 
been presented by Paldus et al. [20], we have not yet implemented such a method 
to compare with the other two reference methods. However, one result is 
included which uses two references to describe the ~A1 state of  methylene and 
this is the unitary coupled electron pair approximation (UCEPA) method of 
Hoffmann and Simons [27]. They used a spin-adapted method which produces 
equations that are linear in an anti-Hermitian cluster operator and which reduces 
to linearized coupled cluster theory when the reference used is a one configura- 
tion closed-shell state. As is commonly the case with linearized CC methods the 
energies are slightly below the full CI energies. The references these authors 
employed for their singlet triplet methylene splitting calculations were a single 
configuration state function (CSF), la22a~ lb223a1 lb l ,  for the 3B 1 state and the 

2 2 2 2 two CSF state c~ la12a I lb: 3al + c: la22a 2 lb 2 lb~, for the ~A1 state. It  has long 
been known [47] that a one configuration function for the triplet and a two 
configuration function for the singlet are needed to give a balanced description 
of the wavefunctions so that AEIa1_3B] can be accurately computed without 
excitations higher than singles and doubles in the wavefunction. The UCEPA 
method of Hoffmann and Simons gives a quite good AE,AI_3B~. 

The acronyms for the single reference coupled cluster methods shown in 
Table 6 are augmented with a parenthetical suffix giving the maximum number  
of  commutators  used to obtain the equations for the energy and wavefunction. 
Thus, CCSD(lc)  has only the first commutator  implemented and is equivalent to 
L-CCSD. Starting with the method using HSOS CCSD(lc)  for the 3B~ state we 
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find that the triplet energy is very close to the full CI energy, but if we use the 
CCSD(le)  method on the ~A~ state to obtain AE~AI_3sl then the result is quite 
poor. This is because the single reference CCSD(lc)  method does a very poor  job 
of describing the inherently two configuration 1A 1 state and obtains an energy well 
below that of the full CI result. However, after we add terms quadratic in T to 
compute the energy of  the ~A1 state with CCSD(2¢) then the method produces a 
more reasonable answer and this time gives an answer which is above the full CI 
answer. Going from CCSD(2c) to CCSD(4c) (=-the full CCSD model for a 
closed-shell reference function) does not change the result by even a/ tHartree.  To 
obtain AEI a ~_3s~ using the CCSD wavefunctions more commutators must be used 
in the HSOS CCSD method as well. The HSOS CCSD(2c) method provides an 
energy above the full CI energy and adding the third commutator  has a negligible 
effect on the energy. If  HSOS CCSD(8c) (=-the full HSOS CCSD method) were 
currently available, no change in the result would be expected. The splitting 
AE~A ~_3B~ at the HSOS CCSD(3c)/CCSD(4c) level is quite good compared to the 
CISD(int. space) results; however, it is clear that a multireference description of 
the singlet is needed to fully treat this problem with methods based on only single 
and double excitations. 

The PSACCSD method is also compared to CCSD in Table 6. The 
AE~A ~_3B~ is better but this is because PSACCSD overestimates the energy of  the 
triplet state, although the degree of overestimation is quite small. Also provided 
are results using the PCCSD method of  Rittby and Bartlett [28], which produces 
answers that are very similar to the HSOS CCSD(3c) results. 

4.2. The 2B 1 and 2A 1 NHz potential energy surfaces 

The 2B 1 and 2A1 states of  NH 2 were studied with the open-shell CCSD methods 
for the equilibrium nuclear geometry as well as geometries where the N - H  bond 
distances have been stretched. Specifically, the geometries employed are req ( =-the 
equilibrium geometry), 1.5reo, 2req, and a structure that is essentially dissociated 
into N atom and H2. The ~B~ NH 2 results for the open-shell coupled cluster 
methods are listed in Table 7. All use DZ basis sets and exclude excitations from 
the lowest lying molecular orbital, the ls-like orbital on nitrogen. What this table 
shows are the differences between the open-shell coupled cluster methods and the 
full CI energies which were obtained by Bauschlicher et al. [48], as well as the SCF, 
CISD, and CISD + D a v .  differences, which were obtained by Bauschlicher et al. 
Their CISD excitations were restricted to the interacting space. 

Table 7. Total energies (a.u.) relative to full CI for the 2B 1 state of N H  2 

Method AEr~ dEl.sr~ AE2r~ N + H 2 

SCF 0.102203 0.161029 0.264315 0.089605 
CISD 0.004609 0.016439 0.055109 0.006215 
CISD ÷Dav. 0.000447 - 0.000890 - 0.004487 0.000758 
PCCSD 0.001272 0.004273 0.000134 0.002720 
PSACCSD(4c) 0.001340 0.004566 0.001059 0.002756 
HSOS CCSD(lc) 0.000281 -0.007639 diverged -0.011179 
HSOS CCSD(2c) 0.001342 0.004448 diverged 0.002774 
HSOS CCSD(3c) 0.001341 0.004487 0.006936 0.002773 
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Several insights may be gained from such a comparison besides the devia- 
tions from the full CI results. The SCF wavefunction becomes a very poor 
description as the N - H  distances are increased; thus this comparison tests the 
ability of  the methods to make up for the deficiencies of a single reference. Also, 
it is usually more important to obtain correct relative energies, as opposed to 
absolute energies. If  a constant error relative t o  the full CI is consistently 
obtained with the method, then for all practical purposes it works as well as full 
CI for that case. 

Examining Table 7 we see the difficulty that SCF has in describing the 2B~ 
state of NHz as the N - H  bond distances are increased. The CISD method 
considerably corrects for this deficiency, but its error is still too large. As is 
frequently the case for small systems, CISD + D a v .  significantly improves upon 
the CISD energy, giving both smaller and more uniform errors than CISD. 
However, the CISD + D a v .  error drops by 0.0036 Hartree going from 1.5req to 
2req. A similar drop is observed for the PCCSD and PSACCSD methods, 
although the drop is larger for the PCCSD method. These methods also show a 
roughly 0.003 Hartree increase going from req to 1.5req , which was not observed 
for the CISD + Dav. method. However, both the PCCSD and PSACCSD 
methods greatly improve upon the CISD result. The PCCSD results are slightly 
better than the PSACCSD results using absolute differences from the full CI 
answers as the yardstick. The HSOS CCSD(3c) results are very close to the 
PSACCSD results for all but the 2req result, where it is farther from the full CI 
result than the PSACCSD result. Despite this, it may be stated that the HSOS 
CCSD(3c) answer is better, because it shows a more uniform deviation from the 
full CI result; but due to difficulties in converging the HSOS CCSD(2c) result, it 
cannot be said that the HSOS CCSD method is converged with respect to the 
number of commutators for the 2req energy point. 

A similar analysis can be performed on the 2A 1 NH2 results which are 
displayed in Table 8. These results are similar to the 2B 1 NH2 results except for 
the structure at 2req, where HSOS CCSD(3c) results resemble those for the 
PCCSD and PSACCSD methods more closely. This does not seem to indicate a 
change in the behavior for the HSOS CCSD method since its behavior parallels 
the behavior seen in the 2B 1 NH 2 case. However, the PCCSD and PSACCSD 
methods now exhibit a different trend, instead of giving a drop in energy relative 
to the full CI energy as the bond lengths increase, the energies now continue 
increasing as the bond is stretched. This could be interpreted as meaning that the 
HSOS CCSD is more uniform or stable with respect to  changes in the electronic 
system. In other words, when HSOS CCSD is inappropriate for describing an 
electronic wavefunction, we have a better chance of predicting in what way the 

Table 8. Total energies (a.u.) relative to full CI for the 2A 1 state o f  N H  2 

Method AEre AE1.5re~ dE2req N + H 2 

SCF 0.097980 0.138296 0.200654 0.097165 
CISD 0.004336 0.012032 0.032600 0.013125 
CISD +Dav. 0.000616 0.000893 -0.004761 0.005426 
PCCSD 0.001240 0.005042 0.016325 0.007310 
PSACCSD(4c) 0.001291 0.005240 0.0 17762 0.007359 
HSOS CCSD(lc) 0.000408 -0.000675 diverged diverged 
HSOS CCSD(2c) 0.001277 0.005070 0.016231 0.007345 
HSOS CCSD(3c) 0.001274 0.005042 0.017186 0.007351 
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HSOS CCSD result is incorrect. This hypothesis will have to be confirmed by 
experience and by including more than three commutators in the equations for 
the energy and the cluster coefficients. This need for more commutators can be 
seen by noting that this geometry shows the largest change seen so far for HSOS 
CCSD in going from two to three commutators. For cases where the SCF 
reference forms a good first approximation only two commutators are necessary; 
however, as the SCF description becomes poorer more commutators must be 
added to get equations with good convergence properties and to obtain an 
answer that will not change as still more commutators are added. 

5. Conclusion 

A method for deriving and implementing equations expressed in the second 
quantization formalism has been developed. This has made possible the rapid 
development of spin-adapted high-spin open-shell coupled cluster theories and 
application of these new methods to simple molecular systems. However, the 
techniques used to produce these results have been kept general. Thus, coupled 
cluster methods using different reference states can be much more rapidly 
implemented than would otherwise be possible. Work is planned for implement- 
ing a spin-adapted coupled cluster method which starts with an open-shell singlet 
reference, for example; but the technique is not limited to single reference 
wavefunctions. The n dependence, where n is the number of electrons, of the 
processor time requirement and the memory requirement have been reduced to 
their minimum values in the current implementation. Future implementations 
need to reduce the polynomial coefficients, which give the memory and processor 
requirements in terms of powers of n. However, once the SQSYM compiler is 
able to generate efficient code, then all of the methods that SQSYM has been 
used to investigate will benefit from this work. Thus, although a general 
optimization scheme is more complex and time consuming to develop than is the 
optimization of a single program, an overall savings in development time will be 
realized for a general compiler capable of optimizing any expression which might 
arise in electronic structure theory. 

All of the high-spin open-shell coupled cluster methods, HSOS CCSD, 
PSACCSD, and PCCSD, investigated show a significant improvement over the 
CISD method, even for the small systems investigated here. Which of these 
methods will become the technique of choice depends upon several factors, 
including computational efficiency of the energy program, efficiency of the energy 
gradient with respect to nuclear displacements, and possibly the ease of comput- 
ing second derivatives of the energy. Ultimately, the PSACCSD and HSOS 
CCSD methods should use less processor time and memory than the PCCSD 
method and will probably become competitive with the GUGACI processor 
requirements. At that time open-shell coupled cluster methods will be as success- 
ful in displacing other methods for the description of electron correlation, as has 
been the case for the closed-shell coupled cluster method. 
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